Gene description for APOE |
Gene name |
apolipoprotein E |
Gene symbol |
APOE |
Other names/aliases |
AD2 LDLCQ5 LPG |
Species |
Homo sapiens |
Database cross references - APOE |
Vesiclepedia |
VP_348 |
ExoCarta |
ExoCarta_348 |
Entrez Gene |
348 |
HGNC |
613 |
MIM |
107741 |
APOE identified in extracellular vesicles derived from the following tissue/cell type |
Aqueous humor [Exosomes] More >>>
|
24400796
|
Ascites [Microvesicles] More >>>
|
21630462
|
Ascites [Microvesicles] More >>>
|
21630462
|
Ascites [Microvesicles] More >>>
|
21630462
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
26378940
|
Breast milk [Exosomes] More >>>
|
17641064
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Carotid atherosclerotic plaques [Microparticles] More >>>
|
20031610
|
Carotid atherosclerotic plaques [Microparticles] More >>>
|
20031610
|
Cerebrospinal fluid [Extracellular vesicles] More >>>
|
29188495
|
Cerebrospinal fluid [Extracellular vesicles] More >>>
|
29188495
|
Chronic lymphocytic leukemia cells [Exosomes] More >>>
|
26100252
|
Colorectal cancer cells [Microvesicles] More >>>
|
19930720
|
Colorectal cancer cells [Exosomes/Membrane vesicles] More >>>
|
23585443
|
Colorectal cancer cells [Exosomes/Membrane vesicles] More >>>
|
23585443
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
28842968
|
Dendritic cells [Microvesicles] More >>>
|
26858453
|
Dendritic cells [Microvesicles] More >>>
|
26858453
|
Dendritic cells [Exosomes] More >>>
|
26858453
|
Dendritic cells [Exosomes] More >>>
|
26858453
|
Embryonic kidney cells [Exosomes] More >>>
|
25483805
|
Embryonic kidney cells [Exosomes] More >>>
|
25483805
|
Endothelial cells [Microparticles] More >>>
|
19369228
|
Endothelial cells [Exosomes/Extracellular vesicles] More >>>
|
24009886
|
Epithelial cells [Exosomes] More >>>
|
25776846
|
Glioblastoma cells [Microvesicles] More >>>
|
19011622
|
Glioblastoma cells [Exosomes] More >>>
|
25802036
|
Glioblastoma cells [Exosomes] More >>>
|
25261722
|
Keratinocytes [Exosomes] More >>>
|
19530224
|
Keratinocytes [Exosomes] More >>>
|
19530224
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Exosomes] More >>>
|
24939845
|
Macrophages [Exosomes] More >>>
|
22711894
|
Macrophages [Exosomes] More >>>
|
22711894
|
Malignant pleural effusions [Exosomes/Microvesicles/Ectosomes/Microparticles] More >>>
|
23585444
|
Melanoma cells [Exosomes] More >>>
|
22635005
|
Mesenchymal stem cells [Exosomes] More >>>
|
Unpublished / Not applicable
|
Monocytes [Microparticles] More >>>
|
19548909
|
Monocytes [Microparticles] More >>>
|
19548909
|
Monocytes [Microparticles] More >>>
|
19548909
|
Monocytes [Microparticles] More >>>
|
19548909
|
Neonatal myoblast cells [Microvesicles/Nanovesicles] More >>>
|
23000592
|
Neonatal myoblast cells [Microvesicles/Nanovesicles] More >>>
|
23000592
|
Neuroblastoma cells [Exosomes/Membrane vesicles] More >>>
|
24069378
|
Neuroblastoma cells [Exosomes] More >>>
|
25053844
|
Neutrophils [Microparticles] More >>>
|
23660474
|
Neutrophils [Microparticles] More >>>
|
23660474
|
Ovarian cancer cells [Exosomes] More >>>
|
23333927
|
Ovarian cancer cells [Exosomes] More >>>
|
23333927
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Pancreatic adenocarcinoma cells [Exosomes] More >>>
|
24218614
|
Placenta [Exosomes] More >>>
|
25157233
|
Placenta choriocarcinoma cells [Exosomes] More >>>
|
25157233
|
Placental mesenchymal stem cells [Exosomes] More >>>
|
23861904
|
Plasma [Exosomes] More >>>
|
19028452
|
Plasma [Exosomes] More >>>
|
24115447
|
Plasma [Exosomes] More >>>
|
24115447
|
Plasma [Membrane vesicles/Microparticles] More >>>
|
20156641
|
Plasma [Microparticles] More >>>
|
22329422
|
Plasma [Microparticles] More >>>
|
23056467
|
Plasma [Exosomes] More >>>
|
22046311
|
Plasma [Extracellular vesicles] More >>>
|
26154623
|
Plasma [Extracellular vesicles] More >>>
|
26154623
|
Plasma [Extracellular vesicles] More >>>
|
26154623
|
Plasma [Extracellular vesicles] More >>>
|
26154623
|
Plasma [Extracellular vesicles] More >>>
|
26154623
|
Platelets [Microparticles] More >>>
|
16212402
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Exosomes] More >>>
|
25844599
|
Prostate cancer cells [Exosomes] More >>>
|
25844599
|
Prostate cancer cells [Exosomes] More >>>
|
24347249
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
T cells [Exosomes] More >>>
|
23463506
|
T cells [Exosomes] More >>>
|
23463506
|
Thymus [Exosomes] More >>>
|
23844026
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Urine [Exosomes] More >>>
|
19056867
|
Urine [Microparticles] More >>>
|
18373357
|
Urine [Microparticles] More >>>
|
18373357
|
Urine [Exosomes] More >>>
|
21595033
|
Urine [Exosomes] More >>>
|
21595033
|
Urine [Exosomes] More >>>
|
21595033
|
Urine [Exosomes/Membrane vesicles] More >>>
|
22106071
|
Urine [Exosomes/Membrane vesicles] More >>>
|
23082778
|
Urine [Exosomes/Membrane vesicles] More >>>
|
23082778
|
Urine [Exosomes/Membrane vesicles] More >>>
|
23376485
|
Urine [Exosomes/Microvesicles] More >>>
|
23533145
|
Urine [Exosomes/Microvesicles] More >>>
|
23533145
|
Urine [Exosomes/Microvesicles] More >>>
|
23886663
|
Urine [Exosomes] More >>>
|
25471207
|
Urine [Exosomes] More >>>
|
25471207
|
Experiment description of studies that identified APOE in extracellular vesicles |
1
|
Experiment ID | 1258 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24400796
|
Organism | Homo sapiens |
Experiment description | Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. |
Authors | Kang GY, Bang JY, Choi AJ, Yoon J, Lee WC, Choi S, Yoon S, Kim HC, Baek JH, Park HS, Lim HJ, Chung H. |
Journal name |
J Proteome Res.
|
Publication year | 2014 |
Sample | Aqueous humor |
Sample name | Age-related macular degeneration patients |
Isolation/purification methods | ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140174: EV-METRIC:13%, 13%
|
|
|
2
|
Experiment ID | 157 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 1 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
3
|
Experiment ID | 158 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 2 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
4
|
Experiment ID | 159 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 3 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
5
|
Experiment ID | 1059 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 1 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
6
|
Experiment ID | 1060 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 2 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
7
|
Experiment ID | 1061 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 3 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
8
|
Experiment ID | 1062 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 1 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
9
|
Experiment ID | 1063 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 2 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
10
|
Experiment ID | 1064 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 3 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
11
|
Experiment ID | 79 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 1 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
12
|
Experiment ID | 80 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis -Sample 2 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
13
|
Experiment ID | 81 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 3 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
14
|
Experiment ID | 534 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | EBV- and KSHV-infected B cells (JSC-1, BC1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
15
|
Experiment ID | 535 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | EBV-infected B cells (#1, HLJ, IM9, CP) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
16
|
Experiment ID | 536 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | KSHV-infected B cell (JC, BC3, BCP1, BCBL1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
17
|
Experiment ID | 537 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | Normal B cells (BJAB) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
18
|
Experiment ID | 582 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | SF295 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
19
|
Experiment ID | 585 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | SNB-75 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
20
|
Experiment ID | 586 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | U251 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
21
|
Experiment ID | 575 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | BT549 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
22
|
Experiment ID | 578 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | MDA-MB-231 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
23
|
Experiment ID | 1029 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26378940
|
Organism | Homo sapiens |
Experiment description | Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis. |
Authors | Clark DJ, Fondrie WE, Liao Z, Hanson PI, Fulton A, Mao L, Yang AJ. |
Journal name |
Anal Chem.
|
Publication year | 2015 |
Sample | Breast cancer cells |
Sample name | SKBR3B - 100 K pellet |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV150004: EV-METRIC:67%, 38%
|
|
|
24
|
Experiment ID | 48 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
17641064
|
Organism | Homo sapiens |
Experiment description | Exosomes with immune modulatory features are present in human breast milk. |
Authors | Admyre C, Johansson SM, Qazi KR, FiléJJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S |
Journal name |
JIMMU
|
Publication year | 2007 |
Sample | Breast milk |
Sample name | Breast milk - mature milk |
Isolation/purification methods | Differential centrifugation Filtration Sucrose density gradient |
Flotation density | 1.10-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QSTAR] Western blotting Immunoelectron microscopy FACS |
EV-TRACK |
-
|
|
|
25
|
Experiment ID | 574 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ-Orbitrap Elite, Q-Exactive]
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components |
Authors | Van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
MCP
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Breast milk - normal |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
26
|
Experiment ID | 950 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
27
|
Experiment ID | 951 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
28
|
Experiment ID | 952 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
29
|
Experiment ID | 953 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D4 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
30
|
Experiment ID | 954 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D5 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
31
|
Experiment ID | 955 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D6 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
32
|
Experiment ID | 956 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D7 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
33
|
Experiment ID | 957 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - pooled |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
34
|
Experiment ID | 1207 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 1 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
35
|
Experiment ID | 1208 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 2 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
36
|
Experiment ID | 1209 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 3 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
37
|
Experiment ID | 1210 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 4 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
38
|
Experiment ID | 1211 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 5 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
39
|
Experiment ID | 1214 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultracentrifugation, sample 3 |
Isolation/purification methods | Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
40
|
Experiment ID | 408 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Proton Nucelar Magnetic Resonance Spectrometry
|
PubMed ID |
20031610
|
Organism | Homo sapiens |
Experiment description | Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. |
Authors | Mayr M, Grainger D, Mayr U, Leroyer AS, Leseche G, Sidibe A, Herbin O, Yin X, Gomes A, Madhu B, Griffiths JR, Xu Q, Tedgui A, Boulanger CM. |
Journal name |
Circ Cardiovasc Genet
|
Publication year | 2009 |
Sample | Carotid atherosclerotic plaques |
Sample name | Normal-Carotid atherosclerotic plaque |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Metabolites |
Methods used in the study | Proton Nucelar Magnetic Resonance Spectrometry |
EV-TRACK |
-
|
|
|
41
|
Experiment ID | 409 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
20031610
|
Organism | Homo sapiens |
Experiment description | Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. |
Authors | Mayr M, Grainger D, Mayr U, Leroyer AS, Leseche G, Sidibe A, Herbin O, Yin X, Gomes A, Madhu B, Griffiths JR, Xu Q, Tedgui A, Boulanger CM. |
Journal name |
Circ Cardiovasc Genet
|
Publication year | 2009 |
Sample | Carotid atherosclerotic plaques |
Sample name | Patients of carotid atherosclerosis-Carotid atherosclerotic plaque |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
42
|
Experiment ID | 650 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29188495
|
Organism | Homo sapiens |
Experiment description | Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. |
Authors | Manek R, Moghieb A, Yang Z, Kumar D, Kobessiy F,Sarkis GA, Raghavan V, Wang KKW. |
Journal name |
Molecular Neurobiology
|
Publication year | 2018 |
Sample | Cerebrospinal fluid |
Sample name | Cerebrospinal fluid - Normal |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
43
|
Experiment ID | 651 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29188495
|
Organism | Homo sapiens |
Experiment description | Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. |
Authors | Manek R, Moghieb A, Yang Z, Kumar D, Kobessiy F,Sarkis GA, Raghavan V, Wang KKW. |
Journal name |
Molecular Neurobiology
|
Publication year | 2018 |
Sample | Cerebrospinal fluid |
Sample name | Cerebrospinal Fluid - Traumatic brain injury |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
44
|
Experiment ID | 902 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
26100252
|
Organism | Homo sapiens |
Experiment description | Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts |
Authors | Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E. |
Journal name |
Blood
|
Publication year | 2015 |
Sample | Chronic lymphocytic leukemia cells |
Sample name | MEC-1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.15-1.17 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry FACS Western blotting |
EV-TRACK |
EV150015: EV-METRIC:22%, 44%
|
|
|
45
|
Experiment ID | 303 |
Identified molecule | mrna
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray [Illumina]
|
PubMed ID |
19930720
|
Organism | Homo sapiens |
Experiment description | Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells |
Authors | Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS |
Journal name |
BMC Genomics
|
Publication year | 2009 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | Differential centrifugation Ultrafiltration OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein mRNA |
Methods used in the study | Western blotting RT-PCR Microarray [Illumina] |
EV-TRACK |
-
|
|
|
46
|
Experiment ID | 517 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23585443
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of exosomes derived from human primary and metastatic colorectal cells reveal differential expression of key metastatic factors and signal transduction components. |
Authors | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130010: EV-METRIC:44%
|
|
|
47
|
Experiment ID | 518 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23585443
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of exosomes derived from human primary and metastatic colorectal cells reveal differential expression of key metastatic factors and signal transduction components. |
Authors | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Colorectal cancer cells |
Sample name | SW620 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130010: EV-METRIC:44%
|
|
|
48
|
Experiment ID | 587 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | Colo205 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
49
|
Experiment ID | 590 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | HCT-15 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
50
|
Experiment ID | 592 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | KM12 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
51
|
Experiment ID | 593 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | SW620 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
52
|
Experiment ID | 1050 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics.
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | lim1215 - II |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
53
|
Experiment ID | 562 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F3 10K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
54
|
Experiment ID | 563 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F5 10K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.14 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
55
|
Experiment ID | 564 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F3 100K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
56
|
Experiment ID | 565 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ ORBITRAP]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F5 100K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.14 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ ORBITRAP] |
EV-TRACK |
-
|
|
|
57
|
Experiment ID | 925 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25483805
|
Organism | Homo sapiens |
Experiment description | Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties |
Authors | Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J. |
Journal name |
Sci Rep
|
Publication year | 2014 |
Sample | Embryonic kidney cells |
Sample name | HEK293T - P150 - Fraction 1.12 g/mL |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140018: EV-METRIC:56%, 56%
|
|
|
58
|
Experiment ID | 927 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25483805
|
Organism | Homo sapiens |
Experiment description | Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties |
Authors | Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J. |
Journal name |
Sci Rep
|
Publication year | 2014 |
Sample | Embryonic kidney cells |
Sample name | HEK293T - P450 - Fraction 1.12 g/mL |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140018: EV-METRIC:56%, 56%
|
|
|
59
|
Experiment ID | 393 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19369228
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. |
Authors | Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. |
Journal name |
Blood
|
Publication year | 2009 |
Sample | Endothelial cells |
Sample name | Normal-Endothelial progenitor cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
60
|
Experiment ID | 551 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
24009886
|
Organism | Homo sapiens |
Experiment description | Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. |
Authors | de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Endothelial cells |
Sample name | Stressed (hypoxia, TNF-alpha-induced activation, high glucose and mannose concentrations)-Endothelial cells (HMEC-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120004: EV-METRIC:67%
|
|
|
61
|
Experiment ID | 861 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25776846
|
Organism | Homo sapiens |
Experiment description | Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens |
Authors | Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, Ekwall O. |
Journal name |
Immunol Cell Biol
|
Publication year | 2015 |
Sample | Epithelial cells |
Sample name | Thymic tissue - culture 1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150045: EV-METRIC:25%
|
|
|
62
|
Experiment ID | 203 |
Identified molecule | mrna
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
19011622
|
Organism | Homo sapiens |
Experiment description | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers |
Authors | Skog J, Wüer T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO |
Journal name |
Nat Cell Biol
|
Publication year | 2008 |
Sample | Glioblastoma cells |
Sample name | Glioblastoma cells |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration |
Flotation density | - |
Molecules identified in the study | Protein miRNA mRNA |
Methods used in the study | RT-PCR Antibody array Microarray |
EV-TRACK |
-
|
|
|
63
|
Experiment ID | 722 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25802036
|
Organism | Homo sapiens |
Experiment description | Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. |
Authors | de Vrij J, Maas SL, Kwappenberg KM, Schnoor R, Kleijn A, Dekker L, Luider TM, de Witte LD, Litjens M, van Strien ME, Hol EM, Kroonen J, Robe PA, Lamfers ML, Schilham MW, Broekman ML. |
Journal name |
Int J Cancer
|
Publication year | 2015 |
Sample | Glioblastoma cells |
Sample name | U87.MG/EGFRvIII |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150064: EV-METRIC:0%, 0%, 29%
|
|
|
64
|
Experiment ID | 1243 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25261722
|
Organism | Homo sapiens |
Experiment description | Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. |
Authors | Kore RA, Abraham EC. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Glioblastoma cells |
Sample name | U373 cells treated with 10ng/ml of TNF-. |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140183: EV-METRIC:22%
|
|
|
65
|
Experiment ID | 398 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19530224
|
Organism | Homo sapiens |
Experiment description | Profile of exosomes related proteins released by differentiated and undifferentiated human keratinocytes. |
Authors | Chavez-Muñoz C, Kilani RT, Ghahary A. |
Journal name |
J Cell Physiol
|
Publication year | 2009 |
Sample | Keratinocytes |
Sample name | Differentiated-Keratinocytes |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
66
|
Experiment ID | 399 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19530224
|
Organism | Homo sapiens |
Experiment description | Profile of exosomes related proteins released by differentiated and undifferentiated human keratinocytes. |
Authors | Chavez-Muñoz C, Kilani RT, Ghahary A. |
Journal name |
J Cell Physiol
|
Publication year | 2009 |
Sample | Keratinocytes |
Sample name | Undifferentiated-Keratinocytes |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
67
|
Experiment ID | 595 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | A498 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
68
|
Experiment ID | 596 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | ACHN |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
69
|
Experiment ID | 598 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | RXF 393 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
70
|
Experiment ID | 604 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Leukemia cells |
Sample name | K562 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
71
|
Experiment ID | 605 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Leukemia cells |
Sample name | MOLT-4 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
72
|
Experiment ID | 1251 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24939845
|
Organism | Homo sapiens |
Experiment description | Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. |
Authors | Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. |
Journal name |
J Biol Chem.
|
Publication year | 2014 |
Sample | Leukemia cells |
Sample name | ED-40515 -HTLV-1 infected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140028: EV-METRIC:33%
|
|
|
73
|
Experiment ID | 1015 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22711894
|
Organism | Homo sapiens |
Experiment description | Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. |
Authors | Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. |
Journal name |
J Immunol.
|
Publication year | 2012 |
Sample | Macrophages |
Sample name | Monocyte-derived macrophages - Myosin B pulldown exosomes |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein Lipids |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120137: EV-METRIC:17%, 0%
|
|
|
74
|
Experiment ID | 1017 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22711894
|
Organism | Homo sapiens |
Experiment description | Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. |
Authors | Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. |
Journal name |
J Immunol.
|
Publication year | 2012 |
Sample | Macrophages |
Sample name | Monocyte-derived macrophages - Vinculin/Talin pulldown exosomes |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein Lipids |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120137: EV-METRIC:17%, 0%
|
|
|
75
|
Experiment ID | 519 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Ectosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23585444
|
Organism | Homo sapiens |
Experiment description | Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. |
Authors | Park JO, Choi DY, Choi DS, Kim HJ, Kang JW, Jung JH, Lee JH, Kim J, Freeman MR, Lee KY, Gho YS, Kim KP. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Malignant pleural effusions |
Sample name | Non-small cell lung cancer patient-Lung cancer pleural effusion |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130049: EV-METRIC:38%
|
|
|
76
|
Experiment ID | 453 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22635005
|
Organism | Homo sapiens |
Experiment description | Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. |
Authors | Peinado H, Alecković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, GarcÃa-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. |
Journal name |
Nat Med
|
Publication year | 2012 |
Sample | Melanoma cells |
Sample name | B16-F10, SK-MEL-202, SK-MEL035, SK-MEL-265 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120019: EV-METRIC:44%, 44%, 44%
|
|
|
77
|
Experiment ID | 126 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ-FT Ultra]
|
PubMed ID |
Unpublished / Not applicable
|
Organism | Homo sapiens |
Experiment description | Mesenchymal Stem Cell Exosomes: The Future MSC-based Therapy? |
Authors | Ruenn Chai Lai, Ronne Wee Yeh Yeo, Soon Sim Tan, Bin Zhang, Yijun Yin, Newman Siu Kwan Sze, Andre Choo, and Sai Kiang Lim |
Journal name |
Mesenchymal Stem Cell Therapy
|
Publication year | 2011 |
Sample | Mesenchymal stem cells |
Sample name | huES9.E1 |
Isolation/purification methods | HPLC |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Antibody array Mass spectrometry |
EV-TRACK |
-
|
|
|
78
|
Experiment ID | 401 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
79
|
Experiment ID | 402 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Stimulated by IgG-Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
80
|
Experiment ID | 403 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Stimulated by LPS-Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
81
|
Experiment ID | 404 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Stimulated by P-selectin-Ig-Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
82
|
Experiment ID | 467 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23000592
|
Organism | Homo sapiens |
Experiment description | In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. |
Authors | Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain챕 J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Neonatal myoblast cells |
Sample name | Patient of developmental heart defect_exosome-Neonatal myoblast cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
83
|
Experiment ID | 468 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23000592
|
Organism | Homo sapiens |
Experiment description | In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. |
Authors | Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain챕 J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Neonatal myoblast cells |
Sample name | Patient of developmental heart defect_microparticle-Neonatal myoblast cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
84
|
Experiment ID | 556 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
24069378
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. |
Authors | Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Neuroblastoma cells |
Sample name | HTLA-230 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130101: EV-METRIC:38%, 14%
|
|
|
85
|
Experiment ID | 903 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25053844
|
Organism | Homo sapiens |
Experiment description | Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons |
Authors | Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, Dayas CV, Cairns MJ. |
Journal name |
Nucleic Acids Res
|
Publication year | 2014 |
Sample | Neuroblastoma cells |
Sample name | SH-SY5Y |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140076: EV-METRIC:38%
|
|
|
86
|
Experiment ID | 526 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23660474
|
Organism | Homo sapiens |
Experiment description | Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. |
Authors | Dalli J, Montero Melendez T, Norling LV, Yin X, Hinds C, Haskard D, Mayr M, Perretti M. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2013 |
Sample | Neutrophils |
Sample name | Stimulated in fluid phase-Neutrophil |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
87
|
Experiment ID | 527 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23660474
|
Organism | Homo sapiens |
Experiment description | Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. |
Authors | Dalli J, Montero Melendez T, Norling LV, Yin X, Hinds C, Haskard D, Mayr M, Perretti M. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2013 |
Sample | Neutrophils |
Sample name | Stimulated in immobile phase-Neutrophil |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
88
|
Experiment ID | 492 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23333927
|
Organism | Homo sapiens |
Experiment description | Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors | Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Ovarian cancer cells |
Sample name | IGROV1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130002: EV-METRIC:67%, 56%
|
|
|
89
|
Experiment ID | 493 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23333927
|
Organism | Homo sapiens |
Experiment description | Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors | Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-3 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130002: EV-METRIC:67%, 56%
|
|
|
90
|
Experiment ID | 630 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-8 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
91
|
Experiment ID | 631 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | SK-OV-3 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
92
|
Experiment ID | 992 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
93
|
Experiment ID | 993 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR433 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
94
|
Experiment ID | 994 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR5 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
95
|
Experiment ID | 995 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | SKOV3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
96
|
Experiment ID | 1269 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24218614
|
Organism | Homo sapiens |
Experiment description | Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. |
Authors | Shin SJ, Smith JA, Rezniczek GA, Pan S, Chen R, Brentnall TA, Wiche G, Kelly KA. |
Journal name |
Proc Natl Acad Sci U S A.
|
Publication year | 2013 |
Sample | Pancreatic adenocarcinoma cells |
Sample name | L3.6pl- wild type cells |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV130114: EV-METRIC:33%, 0%, 17%
|
|
|
97
|
Experiment ID | 739 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25157233
|
Organism | Homo sapiens |
Experiment description | Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. |
Authors | Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, Illanes SE, Mitchell MD, Rice GE. |
Journal name |
Front Pharmacol
|
Publication year | 2014 |
Sample | Placenta |
Sample name | HTR-8/Svneo |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140214: EV-METRIC:33%
|
|
|
98
|
Experiment ID | 738 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25157233
|
Organism | Homo sapiens |
Experiment description | Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. |
Authors | Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, Illanes SE, Mitchell MD, Rice GE. |
Journal name |
Front Pharmacol
|
Publication year | 2014 |
Sample | Placenta choriocarcinoma cells |
Sample name | JEG-3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140214: EV-METRIC:33%
|
|
|
99
|
Experiment ID | 1135 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23861904
|
Organism | Homo sapiens |
Experiment description | Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. |
Authors | Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, Rice GE. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Placental mesenchymal stem cells |
Sample name | pMSC's in 1% Oxygen |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Ultrafiltration Density gradient centrifugation |
Flotation density | 1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130055: EV-METRIC:33%
|
|
|
100
|
Experiment ID | 44 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19028452
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. |
Authors | Looze C, Yui D, Leung L, Ingham M, Kaler M, Yao X, Wu WW, Shen RF, Daniels MP, Levine SJ |
Journal name |
BBRC
|
Publication year | 2009 |
Sample | Plasma |
Sample name | Plasma |
Isolation/purification methods | Filtration Size exclusion chromatography Sucrose density gradient |
Flotation density | 1.15-1.16 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] Western blotting Immunoelectron microscopy |
EV-TRACK |
-
|
|
|
101
|
Experiment ID | 353 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [Orbitrap Velos]
|
PubMed ID |
24115447
|
Organism | Homo sapiens |
Experiment description | Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma |
Authors | Mathivanan,S. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Plasma |
Sample name | Plasma - Normal |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [Orbitrap Velos] Western blotting |
EV-TRACK |
EV130073: EV-METRIC:0%, 11%, 33%, 33%, 56%
|
|
|
102
|
Experiment ID | 355 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [Orbitrap Velos]
|
PubMed ID |
24115447
|
Organism | Homo sapiens |
Experiment description | Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma |
Authors | Mathivanan,S. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Plasma |
Sample name | Plasma - Normal |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Immunoaffinity (EpCAM) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [Orbitrap Velos] Western blotting |
EV-TRACK |
EV130073: EV-METRIC:0%, 11%, 33%, 33%, 56%
|
|
|
103
|
Experiment ID | 412 |
Identified molecule | protein
|
Extracellular vesicle type | Membrane vesicles/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
20156641
|
Organism | Homo sapiens |
Experiment description | Proteomics of microparticles after deep venous thrombosis. |
Authors | Ramacciotti E, Hawley AE, Wrobleski SK, Myers DD Jr, Strahler JR, Andrews PC, Guire KE, Henke PK, Wakefield TW. |
Journal name |
Thromb Res
|
Publication year | 2010 |
Sample | Plasma |
Sample name | Normal donors and patients of deep venous thrombosis-Plasma |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
104
|
Experiment ID | 443 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
22329422
|
Organism | Homo sapiens |
Experiment description | Quantitative proteome profiling of normal human circulating microparticles. |
Authors | Østergaard O, Nielsen CT, Iversen LV, Jacobsen S, Tanassi JT, Heegaard NH. |
Journal name |
J Proteome Res
|
Publication year | 2012 |
Sample | Plasma |
Sample name | Normal-Platelet-poor plasma |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
105
|
Experiment ID | 473 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23056467
|
Organism | Homo sapiens |
Experiment description | Cause or Effect of Arteriogenesis: Compositional Alterations of Microparticles from CAD Patients Undergoing External Counterpulsation Therapy. |
Authors | Al Kaabi A, Traupe T, Stutz M, Buchs N, Heller M. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Plasma |
Sample name | Patients of external counterpulsation therapy-Blood |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
106
|
Experiment ID | 863 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22046311
|
Organism | Mus musculus |
Experiment description | Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections |
Authors | Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. |
Journal name |
PLoS One
|
Publication year | 2011 |
Sample | Plasma |
Sample name | Peripheral blood plasma - P. yoelii 17X infected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | FACS Mass spectrometry |
EV-TRACK |
EV110102: EV-METRIC:25%, 25%
|
|
|
107
|
Experiment ID | 1223 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26154623
|
Organism | Homo sapiens |
Experiment description | Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals |
Authors | de Menezes-Neto A, Sá MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JM, Fernandez-Becerra C, BorráFE, Del Portillo HA. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2015 |
Sample | Plasma |
Sample name | Donar 1 |
Isolation/purification methods | Exo-spin |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150034: EV-METRIC:17%, 57%
|
|
|
108
|
Experiment ID | 1224 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26154623
|
Organism | Homo sapiens |
Experiment description | Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals |
Authors | de Menezes-Neto A, Sá MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JM, Fernandez-Becerra C, BorráFE, Del Portillo HA. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2015 |
Sample | Plasma |
Sample name | Donar 2 |
Isolation/purification methods | Exo-spin |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150034: EV-METRIC:17%, 57%
|
|
|
109
|
Experiment ID | 1225 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26154623
|
Organism | Homo sapiens |
Experiment description | Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals |
Authors | de Menezes-Neto A, Sá MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JM, Fernandez-Becerra C, BorráFE, Del Portillo HA. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2015 |
Sample | Plasma |
Sample name | Donar 3 |
Isolation/purification methods | Exo-spin |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150034: EV-METRIC:17%, 57%
|
|
|
110
|
Experiment ID | 1226 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26154623
|
Organism | Homo sapiens |
Experiment description | Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals |
Authors | de Menezes-Neto A, Sá MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JM, Fernandez-Becerra C, BorráFE, Del Portillo HA. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2015 |
Sample | Plasma |
Sample name | Donar 1 fr7+8 |
Isolation/purification methods | Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150034: EV-METRIC:17%, 57%
|
|
|
111
|
Experiment ID | 1229 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26154623
|
Organism | Homo sapiens |
Experiment description | Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals |
Authors | de Menezes-Neto A, Sá MJ, Lozano-Ramos I, Segui-Barber J, Martin-Jaular L, Ullate JM, Fernandez-Becerra C, BorráFE, Del Portillo HA. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2015 |
Sample | Plasma |
Sample name | Donar 3 fr8 |
Isolation/purification methods | Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150034: EV-METRIC:17%, 57%
|
|
|
112
|
Experiment ID | 369 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
16212402
|
Organism | Homo sapiens |
Experiment description | The platelet microparticle proteome. |
Authors | Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. |
Journal name |
J Proteome Res
|
Publication year | 2005 |
Sample | Platelets |
Sample name | Normal donors-Platelets |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
113
|
Experiment ID | 633 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DU145 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
114
|
Experiment ID | 841 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
115
|
Experiment ID | 842 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
116
|
Experiment ID | 843 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
117
|
Experiment ID | 845 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
118
|
Experiment ID | 846 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
119
|
Experiment ID | 847 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
120
|
Experiment ID | 851 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
121
|
Experiment ID | 852 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
122
|
Experiment ID | 853 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
123
|
Experiment ID | 855 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
124
|
Experiment ID | 856 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
125
|
Experiment ID | 963 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25844599
|
Organism | Homo sapiens |
Experiment description | Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors | Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, UlléA, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | DU145 Tax-Sen |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.19 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV150027: EV-METRIC:11%, 56%
|
|
|
126
|
Experiment ID | 964 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25844599
|
Organism | Homo sapiens |
Experiment description | Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors | Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, UlléA, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | DU145 Tax-Res |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.13-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV150027: EV-METRIC:11%, 56%
|
|
|
127
|
Experiment ID | 1121 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24347249
|
Organism | Homo sapiens |
Experiment description | Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. |
Authors | Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. |
Journal name |
Mol Carcinog
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | LNCaP- Hypoxic |
Isolation/purification methods | Differential centrifugation Ultracentrifugation ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140124: EV-METRIC:43%, 25%
|
|
|
128
|
Experiment ID | 1191 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP, DHT treatment |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
129
|
Experiment ID | 1192 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP, EtOH |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
130
|
Experiment ID | 1195 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP, EtOH |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
131
|
Experiment ID | 376 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Microvesicle, Storage day 21-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
132
|
Experiment ID | 377 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Microvesicle, Storage day 3-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
133
|
Experiment ID | 378 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Microvesicle, Storage day 42-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
134
|
Experiment ID | 379 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Nanovesicle, Storage day 21-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
135
|
Experiment ID | 380 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Nanovesicle, Storage day 3-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
136
|
Experiment ID | 381 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Nanovesicle, Storage day 42-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
137
|
Experiment ID | 1005 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23463506
|
Organism | Homo sapiens |
Experiment description | The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. |
Authors | Perez-Hernandez D, Gutiéez-Váuez C, Jorge I, Ló-MartÃS, Ursa A, Sáhez-Madrid F, Váuez J, Yáz-Mó |
Journal name |
J Biol Chem.
|
Publication year | 2013 |
Sample | T cells |
Sample name | T lymphoblasts - exosomes pulldown with EWI-2 as a bait |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV130110: EV-METRIC:22%
|
|
|
138
|
Experiment ID | 1008 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23463506
|
Organism | Homo sapiens |
Experiment description | The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. |
Authors | Perez-Hernandez D, Gutiéez-Váuez C, Jorge I, Ló-MartÃS, Ursa A, Sáhez-Madrid F, Váuez J, Yáz-Mó |
Journal name |
J Biol Chem.
|
Publication year | 2013 |
Sample | T cells |
Sample name | T lymphoblasts |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130110: EV-METRIC:22%
|
|
|
139
|
Experiment ID | 538 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23844026
|
Organism | Homo sapiens |
Experiment description | Characterization of human thymic exosomes. |
Authors | Skogberg G, Gudmundsdottir J, van der Post S, Sandström K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Thymus |
Sample name | Normal-Thymus |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130018: EV-METRIC:63%
|
|
|
140
|
Experiment ID | 680 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
141
|
Experiment ID | 681 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
142
|
Experiment ID | 682 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
143
|
Experiment ID | 683 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
144
|
Experiment ID | 684 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
145
|
Experiment ID | 685 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
146
|
Experiment ID | 63 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19056867
|
Organism | Homo sapiens |
Experiment description | Large-scale proteomics and phosphoproteomics of urinary exosomes. |
Authors | Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA |
Journal name |
JASN
|
Publication year | 2009 |
Sample | Urine |
Sample name | Urine - Normal |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] Western blotting |
EV-TRACK |
-
|
|
|
147
|
Experiment ID | 382 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18373357
|
Organism | Homo sapiens |
Experiment description | Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. |
Authors | Smalley DM, Sheman NE, Nelson K, Theodorescu D. |
Journal name |
J Proteome Res
|
Publication year | 2008 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
148
|
Experiment ID | 383 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18373357
|
Organism | Homo sapiens |
Experiment description | Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. |
Authors | Smalley DM, Sheman NE, Nelson K, Theodorescu D. |
Journal name |
J Proteome Res
|
Publication year | 2008 |
Sample | Urine |
Sample name | Patients of bladder cancer-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
149
|
Experiment ID | 429 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
21595033
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. |
Authors | Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV110019: EV-METRIC:44%
|
|
|
150
|
Experiment ID | 430 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
21595033
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. |
Authors | Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Urine |
Sample name | Patients of basement membrane nephropathy-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV110019: EV-METRIC:44%
|
|
|
151
|
Experiment ID | 431 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
21595033
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. |
Authors | Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Urine |
Sample name | Patients of early IgA nephropathy-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV110019: EV-METRIC:44%
|
|
|
152
|
Experiment ID | 437 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
22106071
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). |
Authors | Wang Z, Hill S, Luther JM, Hachey DL, Schey KL. |
Journal name |
Proteomics
|
Publication year | 2012 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120168: EV-METRIC:14%
|
|
|
153
|
Experiment ID | 478 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23082778
|
Organism | Homo sapiens |
Experiment description | Comparative and Targeted Proteomic Analyses of Urinary Microparticles from Bladder Cancer and Hernia Patients. |
Authors | Chen CL, Lai YF, Tang P, Chien KY, Yu JS, Tsai CH, Chen HW, Wu CC, Chung T, Hsu CW, Chen CD, Chang YS, Chang PL, Chen YT. |
Journal name |
J Proteome Res
|
Publication year | 2012 |
Sample | Urine |
Sample name | Patients of bladder cancer-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120030: EV-METRIC:33%
|
|
|
154
|
Experiment ID | 479 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23082778
|
Organism | Homo sapiens |
Experiment description | Comparative and Targeted Proteomic Analyses of Urinary Microparticles from Bladder Cancer and Hernia Patients. |
Authors | Chen CL, Lai YF, Tang P, Chien KY, Yu JS, Tsai CH, Chen HW, Wu CC, Chung T, Hsu CW, Chen CD, Chang YS, Chang PL, Chen YT. |
Journal name |
J Proteome Res
|
Publication year | 2012 |
Sample | Urine |
Sample name | Patients of hernia-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120030: EV-METRIC:33%
|
|
|
155
|
Experiment ID | 498 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23376485
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. |
Authors | Prunotto M, Farina A, Lane L, Pernin A, Schifferli J, Hochstrasser DF, Lescuyer P, Moll S. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Urine |
Sample name | Normal-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130051: EV-METRIC:38%
|
|
|
156
|
Experiment ID | 512 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23533145
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. |
Authors | Principe S, Jones EE, Kim Y, Sinha A, Nyalwidhe JO, Brooks J, Semmes OJ, Troyer DA, Lance RS, Kislinger T, Drake RR. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Urine |
Sample name | Low-grade prostate cancer patient-Expressed prostatic secretions in urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130224: EV-METRIC:14%
|
|
|
157
|
Experiment ID | 513 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23533145
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. |
Authors | Principe S, Jones EE, Kim Y, Sinha A, Nyalwidhe JO, Brooks J, Semmes OJ, Troyer DA, Lance RS, Kislinger T, Drake RR. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Urine |
Sample name | Normal-Expressed prostatic secretions in urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130224: EV-METRIC:14%
|
|
|
158
|
Experiment ID | 540 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23886663
|
Organism | Homo sapiens |
Experiment description | LRRK2 Secretion in Exosomes is Regulated by 14-3-3. |
Authors | Fraser KB, Moehle MS, Daher JP, Webber PJ, Williams JY, Stewart CA, Yacoubian TA, Cowell RM, Dokland T, Ye T, Chen D, Siegal GP, Galemmo RA, Tsika E, Moore DJ, Standaert DG, Kojima K, Mobley JA, West AB. |
Journal name |
Hum Mol Genet
|
Publication year | 2013 |
Sample | Urine |
Sample name | Normal-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130075: EV-METRIC:11%, 11%, 33%
|
|
|
159
|
Experiment ID | 725 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25471207
|
Organism | Homo sapiens |
Experiment description | Intraluminal proteome and peptidome of human urinary extracellular vesicles. |
Authors | Liu X, Chinello C, Musante L, Cazzaniga M, Tataruch D, Calzaferri G, James Smith A, De Sio G, Magni F, Zou H, Holthofer H. |
Journal name |
Proteomics Clin Appl.
|
Publication year | 2015 |
Sample | Urine |
Sample name | Normal crude urine- Trypsinized |
Isolation/purification methods | Differential centrifugation Hydrostatic filtration dialysis Ultrafiltration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140189: EV-METRIC:25%
|
|
|
160
|
Experiment ID | 726 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25471207
|
Organism | Homo sapiens |
Experiment description | Intraluminal proteome and peptidome of human urinary extracellular vesicles. |
Authors | Liu X, Chinello C, Musante L, Cazzaniga M, Tataruch D, Calzaferri G, James Smith A, De Sio G, Magni F, Zou H, Holthofer H. |
Journal name |
Proteomics Clin Appl.
|
Publication year | 2015 |
Sample | Urine |
Sample name | Normal crude urine- non-trypsinized |
Isolation/purification methods | Differential centrifugation Hydrostatic filtration dialysis Ultrafiltration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140189: EV-METRIC:25%
|
|
|