Gene description for STXBP3 |
Gene name |
syntaxin binding protein 3 |
Gene symbol |
STXBP3 |
Other names/aliases |
MUNC18-3 MUNC18C PSP UNC-18C |
Species |
Homo sapiens |
Database cross references - STXBP3 |
Vesiclepedia |
VP_6814 |
ExoCarta |
ExoCarta_6814 |
Entrez Gene |
6814 |
HGNC |
11446 |
MIM |
608339 |
STXBP3 identified in extracellular vesicles derived from the following tissue/cell type |
Ascites [Microvesicles] More >>>
|
21630462
|
Ascites [Microvesicles] More >>>
|
21630462
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Microparticles] More >>>
|
19413345
|
B cells [Microparticles] More >>>
|
19413345
|
B cells [Microparticles] More >>>
|
19413345
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
26378940
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Chronic lymphocytic leukemia cells [Exosomes] More >>>
|
26100252
|
Colorectal cancer cells [Microvesicles] More >>>
|
19930720
|
Colorectal cancer cells [Exosomes] More >>>
|
23161513
|
Colorectal cancer cells [Exosomes] More >>>
|
23161513
|
Colorectal cancer cells [Exosomes] More >>>
|
23161513
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23230278
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23230278
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23230278
|
Colorectal cancer cells [Exosomes/Membrane vesicles] More >>>
|
23585443
|
Colorectal cancer cells [Exosomes/Membrane vesicles] More >>>
|
23585443
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles/Ectosomes] More >>>
|
24009881
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles/Ectosomes] More >>>
|
24009881
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Microvesicles] More >>>
|
28842968
|
Colorectal cancer cells [Microvesicles] More >>>
|
28842968
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
28842968
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
28842968
|
Dendritic cells [Microvesicles] More >>>
|
26858453
|
Dendritic cells [Microvesicles] More >>>
|
26858453
|
Dendritic cells [Exosomes] More >>>
|
26858453
|
Dendritic cells [Exosomes] More >>>
|
26858453
|
Dendritic cells [Extracellular vesicles] More >>>
|
26858453
|
Dendritic cells [Extracellular vesicles] More >>>
|
26858453
|
Dendritic cells [Extracellular vesicles] More >>>
|
26858453
|
Dendritic cells [Extracellular vesicles] More >>>
|
26858453
|
Endothelial cells [Microparticles] More >>>
|
18563738
|
Endothelial cells [Microparticles] More >>>
|
18563738
|
Endothelial cells [Microparticles] More >>>
|
18563738
|
Endothelial cells [Microparticles] More >>>
|
19369228
|
Endothelial cells [Exosomes/Extracellular vesicles] More >>>
|
24009886
|
Epithelial cells [Exosomes] More >>>
|
25776846
|
Glioblastoma cells [Exosomes] More >>>
|
25261722
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Lung cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Lung cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Malignant pleural effusions [Exosomes/Microvesicles/Ectosomes/Microparticles] More >>>
|
23585444
|
Medulloblastoma cells [Exosomes/Membrane vesicles/Extracellular vesicles] More >>>
|
22848702
|
Melanoma cells [Extracellular vesicles] More >>>
|
27894104
|
Melanoma cells [Extracellular vesicles] More >>>
|
27894104
|
Mesenchymal stem cells [Microvesicles] More >>>
|
22148876
|
Mesenchymal stem cells [Microvesicles] More >>>
|
19389847
|
Neonatal myoblast cells [Microvesicles/Nanovesicles] More >>>
|
23000592
|
Neonatal myoblast cells [Microvesicles/Nanovesicles] More >>>
|
23000592
|
Ovarian cancer cells [Exosomes] More >>>
|
23333927
|
Ovarian cancer cells [Exosomes] More >>>
|
23333927
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Plasma [Microparticles] More >>>
|
22669077
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Squamous carcinoma cells [Exosomes] More >>>
|
20124223
|
T cells [Microvesicles] More >>>
|
28811610
|
T cells [Exosomes] More >>>
|
23463506
|
Thymus [Exosomes] More >>>
|
23844026
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Urine [Exosomes/Membrane vesicles] More >>>
|
22106071
|
Experiment description of studies that identified STXBP3 in extracellular vesicles |
1
|
Experiment ID | 157 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 1 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
2
|
Experiment ID | 159 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 3 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
3
|
Experiment ID | 1059 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 1 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
4
|
Experiment ID | 1060 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 2 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
5
|
Experiment ID | 1061 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 3 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
6
|
Experiment ID | 1062 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 1 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
7
|
Experiment ID | 1063 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 2 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
8
|
Experiment ID | 1064 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 3 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
9
|
Experiment ID | 79 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 1 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
10
|
Experiment ID | 80 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis -Sample 2 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
11
|
Experiment ID | 81 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 3 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
12
|
Experiment ID | 395 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19413345
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. |
Authors | Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, Herbrecht R, Van Dorsselaer A, Mauvieux L, Sanglier-Cianferani S. |
Journal name |
J Proteome Res
|
Publication year | 2009 |
Sample | B cells |
Sample name | Patients of chronic lymphocytic leukemia-B cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
13
|
Experiment ID | 396 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19413345
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. |
Authors | Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, Herbrecht R, Van Dorsselaer A, Mauvieux L, Sanglier-Cianferani S. |
Journal name |
J Proteome Res
|
Publication year | 2009 |
Sample | B cells |
Sample name | Patients of mantle cell lymphoma-B cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
14
|
Experiment ID | 397 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19413345
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. |
Authors | Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, Herbrecht R, Van Dorsselaer A, Mauvieux L, Sanglier-Cianferani S. |
Journal name |
J Proteome Res
|
Publication year | 2009 |
Sample | B cells |
Sample name | Patients of small cell lymphoma-B cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
15
|
Experiment ID | 584 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | SNB-19 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
16
|
Experiment ID | 586 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | U251 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
17
|
Experiment ID | 575 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | BT549 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
18
|
Experiment ID | 577 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | MCF7 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
19
|
Experiment ID | 578 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | MDA-MB-231 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
20
|
Experiment ID | 1029 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
26378940
|
Organism | Homo sapiens |
Experiment description | Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis. |
Authors | Clark DJ, Fondrie WE, Liao Z, Hanson PI, Fulton A, Mao L, Yang AJ. |
Journal name |
Anal Chem.
|
Publication year | 2015 |
Sample | Breast cancer cells |
Sample name | SKBR3B - 100 K pellet |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV150004: EV-METRIC:67%, 38%
|
|
|
21
|
Experiment ID | 574 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ-Orbitrap Elite, Q-Exactive]
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components |
Authors | Van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
MCP
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Breast milk - normal |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
22
|
Experiment ID | 951 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
23
|
Experiment ID | 957 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - pooled |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
24
|
Experiment ID | 1207 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 1 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
25
|
Experiment ID | 1208 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 2 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
26
|
Experiment ID | 1209 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 3 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
27
|
Experiment ID | 1210 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 4 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
28
|
Experiment ID | 902 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
26100252
|
Organism | Homo sapiens |
Experiment description | Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts |
Authors | Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E. |
Journal name |
Blood
|
Publication year | 2015 |
Sample | Chronic lymphocytic leukemia cells |
Sample name | MEC-1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.15-1.17 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry FACS Western blotting |
EV-TRACK |
EV150015: EV-METRIC:22%, 44%
|
|
|
29
|
Experiment ID | 303 |
Identified molecule | mrna
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray [Illumina]
|
PubMed ID |
19930720
|
Organism | Homo sapiens |
Experiment description | Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells |
Authors | Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS |
Journal name |
BMC Genomics
|
Publication year | 2009 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | Differential centrifugation Ultrafiltration OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein mRNA |
Methods used in the study | Western blotting RT-PCR Microarray [Illumina] |
EV-TRACK |
-
|
|
|
30
|
Experiment ID | 480 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23161513
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. |
Authors | Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | DKO-1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130004: EV-METRIC:44%
|
|
|
31
|
Experiment ID | 481 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23161513
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. |
Authors | Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | Dks-8 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130004: EV-METRIC:44%
|
|
|
32
|
Experiment ID | 482 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23161513
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. |
Authors | Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | DLD-1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130004: EV-METRIC:44%
|
|
|
33
|
Experiment ID | 486 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23230278
|
Organism | Homo sapiens |
Experiment description | Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. |
Authors | Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | A33 affinity purified exosomes-Colorectal cancer cells (LIM1863) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130020: EV-METRIC:38%
|
|
|
34
|
Experiment ID | 487 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23230278
|
Organism | Homo sapiens |
Experiment description | Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. |
Authors | Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | EpCAM affinity purified exosomes-Colorectal cancer cells (LIM1863) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130020: EV-METRIC:38%
|
|
|
35
|
Experiment ID | 488 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23230278
|
Organism | Homo sapiens |
Experiment description | Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. |
Authors | Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | Shed vesicles-Colorectal cancer cells (LIM1863) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130020: EV-METRIC:38%
|
|
|
36
|
Experiment ID | 517 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23585443
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of exosomes derived from human primary and metastatic colorectal cells reveal differential expression of key metastatic factors and signal transduction components. |
Authors | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130010: EV-METRIC:44%
|
|
|
37
|
Experiment ID | 518 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23585443
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of exosomes derived from human primary and metastatic colorectal cells reveal differential expression of key metastatic factors and signal transduction components. |
Authors | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Colorectal cancer cells |
Sample name | SW620 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130010: EV-METRIC:44%
|
|
|
38
|
Experiment ID | 549 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles/Ectosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24009881
|
Organism | Homo sapiens |
Experiment description | Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells. |
Authors | Choi DS, Choi DY, Hong BS, Jang SC, Kim DK, Lee J, Kim YK, Kim KP, Gho YS. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120013: EV-METRIC:50%
|
|
|
39
|
Experiment ID | 550 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles/Ectosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24009881
|
Organism | Homo sapiens |
Experiment description | Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells. |
Authors | Choi DS, Choi DY, Hong BS, Jang SC, Kim DK, Lee J, Kim YK, Kim KP, Gho YS. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | SW620 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120013: EV-METRIC:50%
|
|
|
40
|
Experiment ID | 587 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | Colo205 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
41
|
Experiment ID | 588 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | HCC 2998 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
42
|
Experiment ID | 590 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | HCT-15 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
43
|
Experiment ID | 696 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | LIM1215- insulin induced |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
44
|
Experiment ID | 697 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | LIM1215- non-induced |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
45
|
Experiment ID | 1049 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics.
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | LIM1215 - NI |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
46
|
Experiment ID | 1050 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics.
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | lim1215 - II |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
47
|
Experiment ID | 562 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F3 10K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
48
|
Experiment ID | 563 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F5 10K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.14 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
49
|
Experiment ID | 564 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F3 100K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
50
|
Experiment ID | 565 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ ORBITRAP]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F5 100K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.14 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ ORBITRAP] |
EV-TRACK |
-
|
|
|
51
|
Experiment ID | 567 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ FUSION]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (Igg1 FT) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunobeads (Igg1 FT) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ FUSION] |
EV-TRACK |
-
|
|
|
52
|
Experiment ID | 568 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ FUSION]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (CD9 PD) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunobeads (CD9 PD) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ FUSION] |
EV-TRACK |
-
|
|
|
53
|
Experiment ID | 571 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ FUSION]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (CD63 FT) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunobeads (CD63 FT) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ FUSION] |
EV-TRACK |
-
|
|
|
54
|
Experiment ID | 573 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ FUSION]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (CD81 FT) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunobeads (CD81 FT) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ FUSION] |
EV-TRACK |
-
|
|
|
55
|
Experiment ID | 385 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18563738
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. |
Authors | Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. |
Journal name |
Proteomics
|
Publication year | 2008 |
Sample | Endothelial cells |
Sample name | Endothelial cells (HUVEC) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
56
|
Experiment ID | 386 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18563738
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. |
Authors | Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. |
Journal name |
Proteomics
|
Publication year | 2008 |
Sample | Endothelial cells |
Sample name | Treated by PAI-1-Endothelial cell (HUVEC) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
57
|
Experiment ID | 387 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18563738
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. |
Authors | Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. |
Journal name |
Proteomics
|
Publication year | 2008 |
Sample | Endothelial cells |
Sample name | Treated by TNF-alpha-Endothelial cells (HUVEC) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
58
|
Experiment ID | 393 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19369228
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. |
Authors | Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. |
Journal name |
Blood
|
Publication year | 2009 |
Sample | Endothelial cells |
Sample name | Normal-Endothelial progenitor cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
59
|
Experiment ID | 551 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
24009886
|
Organism | Homo sapiens |
Experiment description | Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. |
Authors | de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Endothelial cells |
Sample name | Stressed (hypoxia, TNF-alpha-induced activation, high glucose and mannose concentrations)-Endothelial cells (HMEC-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120004: EV-METRIC:67%
|
|
|
60
|
Experiment ID | 861 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25776846
|
Organism | Homo sapiens |
Experiment description | Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens |
Authors | Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, Ekwall O. |
Journal name |
Immunol Cell Biol
|
Publication year | 2015 |
Sample | Epithelial cells |
Sample name | Thymic tissue - culture 1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150045: EV-METRIC:25%
|
|
|
61
|
Experiment ID | 1243 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25261722
|
Organism | Homo sapiens |
Experiment description | Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. |
Authors | Kore RA, Abraham EC. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Glioblastoma cells |
Sample name | U373 cells treated with 10ng/ml of TNF-. |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140183: EV-METRIC:22%
|
|
|
62
|
Experiment ID | 597 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | CAKI |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
63
|
Experiment ID | 610 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Lung cancer cells |
Sample name | HOP-62 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
64
|
Experiment ID | 616 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Lung cancer cells |
Sample name | NCI-H522 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
65
|
Experiment ID | 519 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Ectosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23585444
|
Organism | Homo sapiens |
Experiment description | Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. |
Authors | Park JO, Choi DY, Choi DS, Kim HJ, Kang JW, Jung JH, Lee JH, Kim J, Freeman MR, Lee KY, Gho YS, Kim KP. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Malignant pleural effusions |
Sample name | Non-small cell lung cancer patient-Lung cancer pleural effusion |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130049: EV-METRIC:38%
|
|
|
66
|
Experiment ID | 461 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles/Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
22848702
|
Organism | Homo sapiens |
Experiment description | Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. |
Authors | Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, Anchordoquy TJ, Bemis LT, Graner MW. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Medulloblastoma cells |
Sample name | Medulloblastoma cells (D283MED) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120031: EV-METRIC:13%, 56%
|
|
|
67
|
Experiment ID | 618 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Melanoma cells |
Sample name | M14 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
68
|
Experiment ID | 619 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Melanoma cells |
Sample name | MALME-3M |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
69
|
Experiment ID | 310 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry[Q-TOF]
|
PubMed ID |
22148876
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human mesenchymal stem cells |
Authors | Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP, Kim DW |
Journal name |
J Proteome Res
|
Publication year | 2011 |
Sample | Mesenchymal stem cells |
Sample name | Mesenchymal stem cells - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultrafiltration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Mass spectrometry[QTOF] |
EV-TRACK |
-
|
|
|
70
|
Experiment ID | 394 |
Identified molecule | mRNA
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
19389847
|
Organism | Homo sapiens |
Experiment description | Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. |
Authors | Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G. |
Journal name |
J Am Soc Nephrol
|
Publication year | 2009 |
Sample | Mesenchymal stem cells |
Sample name | Normal-Mesenchymal stem cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
-
|
|
|
71
|
Experiment ID | 467 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23000592
|
Organism | Homo sapiens |
Experiment description | In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. |
Authors | Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain챕 J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Neonatal myoblast cells |
Sample name | Patient of developmental heart defect_exosome-Neonatal myoblast cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
72
|
Experiment ID | 468 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23000592
|
Organism | Homo sapiens |
Experiment description | In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. |
Authors | Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain챕 J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Neonatal myoblast cells |
Sample name | Patient of developmental heart defect_microparticle-Neonatal myoblast cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
73
|
Experiment ID | 492 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23333927
|
Organism | Homo sapiens |
Experiment description | Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors | Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Ovarian cancer cells |
Sample name | IGROV1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130002: EV-METRIC:67%, 56%
|
|
|
74
|
Experiment ID | 493 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23333927
|
Organism | Homo sapiens |
Experiment description | Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors | Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-3 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130002: EV-METRIC:67%, 56%
|
|
|
75
|
Experiment ID | 627 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-3 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
76
|
Experiment ID | 628 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-4 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
77
|
Experiment ID | 632 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | NCI-ADR-RES |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
78
|
Experiment ID | 992 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
79
|
Experiment ID | 993 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR433 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
80
|
Experiment ID | 994 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR5 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
81
|
Experiment ID | 995 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | SKOV3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
82
|
Experiment ID | 454 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
22669077
|
Organism | Homo sapiens |
Experiment description | The proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and vesiculation. |
Authors | Bosman GJ, Lasonder E, Groenen-Döpp YA, Willekens FL, Werre JM. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Plasma |
Sample name | Normal-Blood |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
83
|
Experiment ID | 634 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | PC-3 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
84
|
Experiment ID | 841 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
85
|
Experiment ID | 845 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
86
|
Experiment ID | 846 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
87
|
Experiment ID | 851 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
88
|
Experiment ID | 852 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
89
|
Experiment ID | 855 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
90
|
Experiment ID | 856 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
91
|
Experiment ID | 857 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
92
|
Experiment ID | 1194 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP, DHT treatment |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
93
|
Experiment ID | 411 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20124223
|
Organism | Homo sapiens |
Experiment description | Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. |
Authors | Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2010 |
Sample | Squamous carcinoma cells |
Sample name | Squamous carcinoma cell (A431) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV100050: EV-METRIC:22%
|
|
|
94
|
Experiment ID | 708 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Control |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
95
|
Experiment ID | 1008 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23463506
|
Organism | Homo sapiens |
Experiment description | The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. |
Authors | Perez-Hernandez D, Gutiéez-Váuez C, Jorge I, Ló-MartíS, Ursa A, Sáhez-Madrid F, Váuez J, Yáz-Mó |
Journal name |
J Biol Chem.
|
Publication year | 2013 |
Sample | T cells |
Sample name | T lymphoblasts |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130110: EV-METRIC:22%
|
|
|
96
|
Experiment ID | 538 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23844026
|
Organism | Homo sapiens |
Experiment description | Characterization of human thymic exosomes. |
Authors | Skogberg G, Gudmundsdottir J, van der Post S, Sandström K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Thymus |
Sample name | Normal-Thymus |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130018: EV-METRIC:63%
|
|
|
97
|
Experiment ID | 680 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
98
|
Experiment ID | 681 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
99
|
Experiment ID | 682 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
100
|
Experiment ID | 683 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
101
|
Experiment ID | 684 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
102
|
Experiment ID | 685 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
103
|
Experiment ID | 437 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
22106071
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). |
Authors | Wang Z, Hill S, Luther JM, Hachey DL, Schey KL. |
Journal name |
Proteomics
|
Publication year | 2012 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120168: EV-METRIC:14%
|
|
|