Gene description for HSP90AA1 |
Gene name |
heat shock protein 90kDa alpha (cytosolic), class A member 1 |
Gene symbol |
HSP90AA1 |
Other names/aliases |
HSP86 HSP89A HSP90A HSP90N HSPC1 HSPCA HSPCAL1 HSPCAL4 HSPN Hsp89 Hsp90 LAP2 |
Species |
Homo sapiens |
Database cross references - HSP90AA1 |
Vesiclepedia |
VP_3320 |
ExoCarta |
ExoCarta_3320 |
Entrez Gene |
3320 |
HGNC |
5253 |
MIM |
140571 |
HSP90AA1 identified in extracellular vesicles derived from the following tissue/cell type |
adipocytes [Exosomes] More >>>
|
24513287
|
adipocytes [Exosomes] More >>>
|
24513287
|
Ascites [Microvesicles] More >>>
|
21630462
|
Ascites [Microvesicles] More >>>
|
21630462
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
Astrocytoma cells [Extracellular vesicles] More >>>
|
30006486
|
B cells [Exosomes] More >>>
|
12519789
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Exosomes] More >>>
|
20458337
|
B cells [Microparticles] More >>>
|
16342139
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Microvesicles/Oncosomes/Microparticles] More >>>
|
23818640
|
B cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23983189
|
B cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23983189
|
Bladder cancer cells [Exosomes] More >>>
|
20224111
|
Bladder cancer cells [Extracellular vesicles] More >>>
|
29207636
|
Bladder cancer cells [Extracellular vesicles] More >>>
|
29207636
|
Bovine milk [Exosomes] More >>>
|
28290293
|
Bovine milk [Exosomes] More >>>
|
28290293
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Brain cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Breast cancer cells [Exosomes] More >>>
|
25102470
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Exosomes] More >>>
|
28290293
|
Breast milk [Exosomes] More >>>
|
28290293
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Breast milk [Extracellular vesicles] More >>>
|
27601599
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Bronchial epithelial cells [Extracellular vesicles] More >>>
|
29127410
|
Cerebrospinal fluid [Extracellular vesicles] More >>>
|
29188495
|
Cholangiocarcinoma cells [Exosomes] More >>>
|
26148937
|
Chronic lymphocytic leukemia cells [Exosomes] More >>>
|
26100252
|
Chronic lymphocytic leukemia cells [Exosomes] More >>>
|
26100252
|
Chronic lymphocytic leukemia cells [Exosomes] More >>>
|
26100252
|
Chronic lymphocytic leukemia cells [Exosomes] More >>>
|
26100252
|
Colorectal cancer cells [Exosomes] More >>>
|
17956143
|
Colorectal cancer cells [Exosomes] More >>>
|
19837982
|
Colorectal cancer cells [Microvesicles] More >>>
|
19930720
|
Colorectal cancer cells [Microvesicles] More >>>
|
19930720
|
Colorectal cancer cells [Exosomes] More >>>
|
22285593
|
Colorectal cancer cells [Exosomes] More >>>
|
22285593
|
Colorectal cancer cells [Exosomes] More >>>
|
22285593
|
Colorectal cancer cells [Exosomes] More >>>
|
22740476
|
Colorectal cancer cells [Exosomes] More >>>
|
23161513
|
Colorectal cancer cells [Exosomes] More >>>
|
23161513
|
Colorectal cancer cells [Exosomes] More >>>
|
23161513
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23230278
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23230278
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles] More >>>
|
23230278
|
Colorectal cancer cells [Exosomes/Membrane vesicles] More >>>
|
23585443
|
Colorectal cancer cells [Exosomes/Membrane vesicles] More >>>
|
23585443
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles/Ectosomes] More >>>
|
24009881
|
Colorectal cancer cells [Exosomes/Extracellular vesicles/Microvesicles/Ectosomes] More >>>
|
24009881
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Colorectal cancer cells [Microvesicles] More >>>
|
28842968
|
Colorectal cancer cells [Microvesicles] More >>>
|
28842968
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
28842968
|
Colorectal cancer cells [Extracellular vesicles] More >>>
|
28842968
|
Dendritic cells [Microvesicles] More >>>
|
26858453
|
Dendritic cells [Microvesicles] More >>>
|
26858453
|
Dendritic cells [Exosomes] More >>>
|
26858453
|
Dendritic cells [Exosomes] More >>>
|
26858453
|
Dendritic cells [Extracellular vesicles] More >>>
|
26858453
|
Dendritic cells [Extracellular vesicles] More >>>
|
26858453
|
Embryonic kidney cells [Exosomes] More >>>
|
25483805
|
Embryonic kidney cells [Exosomes] More >>>
|
25483805
|
Endothelial cells [Microparticles] More >>>
|
18563738
|
Endothelial cells [Microparticles] More >>>
|
18563738
|
Endothelial cells [Microparticles] More >>>
|
18563738
|
Endothelial cells [Microparticles] More >>>
|
19369228
|
Endothelial cells [Membrane vesicles/Extracellular vesicles] More >>>
|
23436686
|
Endothelial cells [Exosomes/Extracellular vesicles] More >>>
|
24009886
|
Epithelial cells [Exosomes] More >>>
|
11487543
|
Epithelial cells [Membrane blebs] More >>>
|
19567368
|
Epithelial cells [Exosomes] More >>>
|
25776846
|
Epithelial cells [Exosomes] More >>>
|
25776846
|
Glioblastoma cells [Microvesicles] More >>>
|
19011622
|
Glioblastoma cells [Microvesicles] More >>>
|
23344721
|
Glioblastoma cells [Microvesicles] More >>>
|
23344721
|
Glioblastoma cells [Exosomes] More >>>
|
25802036
|
Glioblastoma cells [Extracellular vesicles] More >>>
|
27770278
|
Glioblastoma cells [Extracellular vesicles] More >>>
|
27770278
|
Glioblastoma cells [Extracellular vesicles] More >>>
|
27770278
|
Glioblastoma cells [Extracellular vesicles] More >>>
|
27770278
|
Glioblastoma cells [Extracellular vesicles] More >>>
|
27770278
|
Glioblastoma cells [Extracellular vesicles] More >>>
|
27770278
|
Glioblastoma cells [Exosomes] More >>>
|
29937354
|
Glioblastoma cells [Exosomes] More >>>
|
29937354
|
Glioblastoma cells [Microvesicles] More >>>
|
23807490
|
Islets [Exosomes] More >>>
|
27872147
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Kidney cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Extracellular vesicles] More >>>
|
27894104
|
Leukemia cells [Exosomes] More >>>
|
24939845
|
Leukemia cells [Exosomes] More >>>
|
24939845
|
Leukemia cells [Exosomes] More >>>
|
24939845
|
Leukemia cells [Exosomes] More >>>
|
24939845
|
Lymphoblasts [Exosomes] More >>>
|
19912576
|
Lymphoblasts [Exosomes] More >>>
|
19912576
|
Macrophages [Exosomes] More >>>
|
22711894
|
Macrophages [Exosomes] More >>>
|
22711894
|
Macrophages [Exosomes] More >>>
|
22711894
|
Macrophages [Exosomes] More >>>
|
29953960
|
Macrophages [Exosomes] More >>>
|
29953960
|
Malignant pleural effusions [Exosomes] More >>>
|
14975938
|
Malignant pleural effusions [Exosomes] More >>>
|
14975938
|
Malignant pleural effusions [Exosomes] More >>>
|
14975938
|
Malignant pleural effusions [Exosomes] More >>>
|
14975938
|
Malignant pleural effusions [Exosomes/Microvesicles/Ectosomes/Microparticles] More >>>
|
23585444
|
Melanoma cells [Exosomes] More >>>
|
22635005
|
Melanoma cells [Microvesicles] More >>>
|
23344721
|
Melanoma cells [Microvesicles] More >>>
|
23344721
|
Melanoma cells [Extracellular vesicles] More >>>
|
27894104
|
Melanoma cells [Extracellular vesicles] More >>>
|
27894104
|
Melanoma cells [Extracellular vesicles] More >>>
|
27894104
|
Melanoma cells [Exosomes/Microvesicles] More >>>
|
25261472
|
Mesenchymal stem cells [Exosomes] More >>>
|
Unpublished / Not applicable
|
Mesenchymal stem cells [Microvesicles] More >>>
|
22148876
|
Mesenchymal stem cells [Microvesicles] More >>>
|
22148876
|
Mesenchymal stem cells [Microvesicles] More >>>
|
22148876
|
Mesenchymal stem cells [Microvesicles] More >>>
|
19389847
|
Mesothelioma cells [Exosomes] More >>>
|
15111327
|
Monocytes [Microparticles] More >>>
|
19548909
|
Monocytes [Microparticles] More >>>
|
19548909
|
Monocytes [Microparticles] More >>>
|
19548909
|
Monocytes [Microparticles] More >>>
|
19548909
|
Neonatal myoblast cells [Microvesicles/Nanovesicles] More >>>
|
23000592
|
Neonatal myoblast cells [Microvesicles/Nanovesicles] More >>>
|
23000592
|
Neuroblastoma cells [Exosomes/Membrane vesicles] More >>>
|
24069378
|
Neutrophils [Microparticles] More >>>
|
23660474
|
Neutrophils [Microparticles] More >>>
|
23660474
|
Ovarian cancer cells [Exosomes] More >>>
|
23333927
|
Ovarian cancer cells [Exosomes] More >>>
|
23333927
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Ovarian cancer cells [Exosomes] More >>>
|
24434149
|
Pancreatic adenocarcinoma cells [Exosomes] More >>>
|
24218614
|
Pancreatic adenocarcinoma cells [Exosomes] More >>>
|
24218614
|
Pancreatic adenocarcinoma cells [Exosomes] More >>>
|
24218614
|
Placenta [Exosomes] More >>>
|
25157233
|
Placenta choriocarcinoma cells [Exosomes] More >>>
|
25157233
|
Placental mesenchymal stem cells [Exosomes] More >>>
|
23861904
|
Plasma [Microparticles] More >>>
|
21049385
|
Plasma [Microparticles] More >>>
|
22329422
|
Plasma [Microparticles] More >>>
|
23056467
|
Plasma [Exosomes] More >>>
|
22046311
|
Platelets [Microparticles] More >>>
|
16212402
|
Platelets [Microparticles] More >>>
|
23601281
|
Prostate cancer cells [Exosomes] More >>>
|
22723089
|
Prostate cancer cells [Exosomes] More >>>
|
22723089
|
Prostate cancer cells [Exosomes] More >>>
|
22723089
|
Prostate cancer cells [Exosomes] More >>>
|
22723089
|
Prostate cancer cells [Exosomes] More >>>
|
22723089
|
Prostate cancer cells [Exosomes] More >>>
|
22030351
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
27894104
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Exosomes] More >>>
|
25102470
|
Prostate cancer cells [Exosomes] More >>>
|
25844599
|
Prostate cancer cells [Exosomes] More >>>
|
25844599
|
Prostate cancer cells [Exosomes] More >>>
|
24347249
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Extracellular vesicles] More >>>
|
28881726
|
Prostate cancer cells [Exosomes] More >>>
|
24371517
|
Prostate cancer cells [Exosomes] More >>>
|
24371517
|
Prostate cancer cells [Exosomes] More >>>
|
24347249
|
Prostate cancer cells [Exosomes] More >>>
|
24347249
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Red blood cells [Microvesicles/Nanovesicles] More >>>
|
18346024
|
Renal proximal tubule cells [Exosomes] More >>>
|
24976626
|
Retinal pigment epithelial cells [Exosomes] More >>>
|
24400796
|
Saliva [Exosomes] More >>>
|
19199708
|
Saliva [Exosomes/Membrane vesicles] More >>>
|
20052414
|
Seminal fluid [Prostasomes] More >>>
|
12746840
|
Seminal fluid [Exosomes/Prostasomes] More >>>
|
18819103
|
Seminal plasma [Prostasomes] More >>>
|
26272980
|
Seminal plasma [Prostasomes] More >>>
|
23707955
|
Serum [Exosomes] More >>>
|
22808001
|
Serum [Exosomes] More >>>
|
22808001
|
Serum [Exosomes] More >>>
|
22808001
|
Serum [Exosomes] More >>>
|
22808001
|
Squamous carcinoma cells [Extracellular vesicles] More >>>
|
23954818
|
T cells [Microparticles] More >>>
|
16342139
|
T cells [Microparticles] More >>>
|
16342139
|
T cells [Exosomes] More >>>
|
28811610
|
T cells [Microvesicles] More >>>
|
28811610
|
T cells [Apoptotic bodies] More >>>
|
28811610
|
T cells [Exosomes] More >>>
|
28811610
|
T cells [Microvesicles] More >>>
|
28811610
|
T cells [Apoptotic bodies] More >>>
|
28811610
|
T cells [Exosomes] More >>>
|
28811610
|
T cells [Microvesicles] More >>>
|
28811610
|
T cells [Apoptotic bodies] More >>>
|
28811610
|
T cells [Exosomes] More >>>
|
23463506
|
T cells [Exosomes] More >>>
|
23463506
|
Thymus [Exosomes] More >>>
|
23844026
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Umblical cord mesenchymal stem cells [Microvesicles] More >>>
|
29148239
|
Urine [Exosomes] More >>>
|
15326289
|
Urine [Microparticles] More >>>
|
18373357
|
Urine [Microparticles] More >>>
|
18373357
|
Urine [Exosomes/Membrane particles] More >>>
|
19158352
|
Urine [Exosomes] More >>>
|
21595033
|
Urine [Exosomes] More >>>
|
21595033
|
Urine [Exosomes] More >>>
|
21595033
|
Urine [Exosomes/Membrane vesicles] More >>>
|
22106071
|
Urine [Exosomes] More >>>
|
22418980
|
Urine [Exosomes] More >>>
|
22418980
|
Urine [Exosomes/Membrane vesicles] More >>>
|
23082778
|
Urine [Exosomes/Membrane vesicles] More >>>
|
23082778
|
Urine [Exosomes/Membrane vesicles] More >>>
|
23376485
|
Urine [Exosomes/Microvesicles] More >>>
|
23533145
|
Urine [Exosomes/Microvesicles] More >>>
|
23533145
|
Urine [Exosomes] More >>>
|
25471207
|
Urine [Extracellular vesicles] More >>>
|
29988836
|
Urothelial cells [Extracellular vesicles] More >>>
|
29207636
|
Urothelial cells [Extracellular vesicles] More >>>
|
29207636
|
Experiment description of studies that identified HSP90AA1 in extracellular vesicles |
1
|
Experiment ID | 1099 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24513287
|
Organism | Mus musculus |
Experiment description | Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. |
Authors | Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, Iwao H, Yoshiyama M. |
Journal name |
Biochem Biophys Res Commun
|
Publication year | 2014 |
Sample | adipocytes |
Sample name | 3T3-L1- Normoxic conditions |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
EV140281: EV-METRIC:0%, 22%
|
|
|
2
|
Experiment ID | 1100 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24513287
|
Organism | Mus musculus |
Experiment description | Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. |
Authors | Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, Iwao H, Yoshiyama M. |
Journal name |
Biochem Biophys Res Commun
|
Publication year | 2014 |
Sample | adipocytes |
Sample name | 3T3-L1- Hypoxic conditions |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
EV140281: EV-METRIC:0%, 22%
|
|
|
3
|
Experiment ID | 157 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 1 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
4
|
Experiment ID | 159 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
21630462
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer ascites |
Authors | Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Ascites |
Sample name | Malignant ascites - Colorectal cancer patient 3 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
EV110017: EV-METRIC:38%
|
|
|
5
|
Experiment ID | 1059 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 1 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
6
|
Experiment ID | 1060 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 2 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
7
|
Experiment ID | 1061 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373 - EVs 3 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
8
|
Experiment ID | 1062 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 1 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
9
|
Experiment ID | 1063 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 2 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
10
|
Experiment ID | 1064 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
30006486
|
Organism | Homo sapiens |
Experiment description | The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. |
Authors | Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. |
Journal name |
Mol Cell Proteomics.
|
Publication year | 2018 |
Sample | Astrocytoma cells |
Sample name | U373vIII - EVs 3 |
Isolation/purification methods | Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.13 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
11
|
Experiment ID | 11 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [MALDI TOF]
|
PubMed ID |
12519789
|
Organism | Homo sapiens |
Experiment description | Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. |
Authors | Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mös W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W |
Journal name |
JBC
|
Publication year | 2003 |
Sample | B cells |
Sample name | RN (HLA-DR15+) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | 1.15 g/mL |
Molecules identified in the study | Protein Lipids |
Methods used in the study | Mass spectrometry [MALDI TOF] Mass spectrometry [QTOF] Western blotting Thin layer chromatography High performance liquid chromatography |
EV-TRACK |
-
|
|
|
12
|
Experiment ID | 79 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 1 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
13
|
Experiment ID | 80 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis -Sample 2 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
14
|
Experiment ID | 81 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
20458337
|
Organism | Homo sapiens |
Experiment description | MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis - Sample 3 |
Authors | Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. |
Journal name |
ICB
|
Publication year | 2010 |
Sample | B cells |
Sample name | RN (HLA-DR15) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Immunobeads (MHC Class II) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [FT-ICR] Western blotting |
EV-TRACK |
EV100035: EV-METRIC:44%
|
|
|
15
|
Experiment ID | 308 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry [MALDI TOF/TOF] Mass spectrometry [Q-TOF]
|
PubMed ID |
16342139
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization |
Authors | Miguet L, Pacaud K, Felden C, Hugel B, Martinez MC, Freyssinet JM, Herbrecht R, Potier N, van Dorsselaer A, Mauvieux L |
Journal name |
Proteomics
|
Publication year | 2006 |
Sample | B cells |
Sample name | B cells - Chronic B cell lymphoid patient |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF/TOF] Mass spectrometry [QTOF] |
EV-TRACK |
-
|
|
|
16
|
Experiment ID | 534 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | EBV- and KSHV-infected B cells (JSC-1, BC1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
17
|
Experiment ID | 535 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | EBV-infected B cells (#1, HLJ, IM9, CP) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
18
|
Experiment ID | 536 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | KSHV-infected B cell (JC, BC3, BCP1, BCBL1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
19
|
Experiment ID | 537 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Oncosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23818640
|
Organism | Homo sapiens |
Experiment description | Modulation of B-cell exosome proteins by gamma herpesvirus infection. |
Authors | Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. |
Journal name |
Proc Natl Acad Sci U S A
|
Publication year | 2013 |
Sample | B cells |
Sample name | Normal B cells (BJAB) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130064: EV-METRIC:25%
|
|
|
20
|
Experiment ID | 545 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23983189
|
Organism | Homo sapiens |
Experiment description | Characterization of Multiple Myeloma Vesicles by Label-Free Relative Quantitation. |
Authors | Harshman SW, Canella A, Ciarlariello PD, Rocci A, Agarwal K, Smith EM, Talabere T, Efebera YA, Hofmeister CC, Benson DM Jr, Paulaitis ME, Freitas MA, Pichiorri F. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | B cells |
Sample name | MM.1S |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130092: EV-METRIC:22%
|
|
|
21
|
Experiment ID | 546 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23983189
|
Organism | Homo sapiens |
Experiment description | Characterization of Multiple Myeloma Vesicles by Label-Free Relative Quantitation. |
Authors | Harshman SW, Canella A, Ciarlariello PD, Rocci A, Agarwal K, Smith EM, Talabere T, Efebera YA, Hofmeister CC, Benson DM Jr, Paulaitis ME, Freitas MA, Pichiorri F. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | B cells |
Sample name | U266 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130092: EV-METRIC:22%
|
|
|
22
|
Experiment ID | 76 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry Western blotting
|
PubMed ID |
20224111
|
Organism | Homo sapiens |
Experiment description | Proteomics analysis of bladder cancer exosomes. |
Authors | Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A. |
Journal name |
MCP
|
Publication year | 2010 |
Sample | Bladder cancer cells |
Sample name | HT1376 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | 1.10-1.19 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF/TOF] Western blotting FACS |
EV-TRACK |
EV100014: EV-METRIC:38%, 14%, 44%
|
|
|
23
|
Experiment ID | 905 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29207636
|
Organism | Homo sapiens |
Experiment description | Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder cancer |
Authors | Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF. |
Journal name |
Oncotarget
|
Publication year | 2017 |
Sample | Bladder cancer cells |
Sample name | TCCSUP |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170042: EV-METRIC:22%, 22%, 22%, 14%
|
|
|
24
|
Experiment ID | 930 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29207636
|
Organism | Homo sapiens |
Experiment description | Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder cancer. |
Authors | Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF. |
Journal name |
Oncotarget
|
Publication year | 2017 |
Sample | Bladder cancer cells |
Sample name | TCCSUP |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170042: EV-METRIC:22%, 22%, 22%, 14%
|
|
|
25
|
Experiment ID | 654 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28290293
|
Organism | Bos taurus |
Experiment description | Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. |
Authors | Yng M, Song D, Cao X, Wu R, Liu B, Ye W, Wu J, Yue X. |
Journal name |
Food Res Int
|
Publication year | 2017 |
Sample | Bovine milk |
Sample name | Colostrum |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.7 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
26
|
Experiment ID | 655 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28290293
|
Organism | Bos taurus |
Experiment description | Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. |
Authors | Yng M, Song D, Cao X, Wu R, Liu B, Ye W, Wu J, Yue X. |
Journal name |
Food Res Int
|
Publication year | 2017 |
Sample | Bovine milk |
Sample name | Mature milk |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.7 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
27
|
Experiment ID | 583 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | SF539 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
28
|
Experiment ID | 586 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Brain cancer cells |
Sample name | U251 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
29
|
Experiment ID | 575 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | BT549 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
30
|
Experiment ID | 577 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Breast cancer cells |
Sample name | MCF7 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
31
|
Experiment ID | 886 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting Mass spectrometry
|
PubMed ID |
25102470
|
Organism | Homo sapiens |
Experiment description | Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro |
Authors | Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. |
Journal name |
Biochim Biophys Acta
|
Publication year | 2014 |
Sample | Breast cancer cells |
Sample name | MCF-7 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.10-1.20 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140013: EV-METRIC:56%
|
|
|
32
|
Experiment ID | 574 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ-Orbitrap Elite, Q-Exactive]
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components |
Authors | Van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
MCP
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Breast milk - normal |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
33
|
Experiment ID | 652 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28290293
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. |
Authors | Yng M, Song D, Cao X, Wu R, Liu B, Ye W, Wu J, Yue X. |
Journal name |
Food Res Int
|
Publication year | 2017 |
Sample | Breast milk |
Sample name | Colostrum |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.7 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
34
|
Experiment ID | 653 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28290293
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. |
Authors | Yng M, Song D, Cao X, Wu R, Liu B, Ye W, Wu J, Yue X. |
Journal name |
Food Res Int
|
Publication year | 2017 |
Sample | Breast milk |
Sample name | Mature milk |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.7 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
35
|
Experiment ID | 950 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
36
|
Experiment ID | 951 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
37
|
Experiment ID | 952 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
38
|
Experiment ID | 953 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D4 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
39
|
Experiment ID | 954 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D5 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
40
|
Experiment ID | 955 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D6 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
41
|
Experiment ID | 956 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - D7 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
42
|
Experiment ID | 957 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27601599
|
Organism | Homo sapiens |
Experiment description | Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. |
Authors | van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MH |
Journal name |
Mol Cell Proteomics
|
Publication year | 2016 |
Sample | Breast milk |
Sample name | Milk - derived EVs - pooled |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV160000: EV-METRIC:50%
|
|
|
43
|
Experiment ID | 1207 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 1 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
44
|
Experiment ID | 1208 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 2 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
45
|
Experiment ID | 1209 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 3 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
46
|
Experiment ID | 1210 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 4 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
47
|
Experiment ID | 1211 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultrafiltration and size exclusion chromatography sample 5 |
Isolation/purification methods | Ultrafiltration Size exclusion chromatography |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
48
|
Experiment ID | 1212 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultracentrifugation, sample 1 |
Isolation/purification methods | Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
49
|
Experiment ID | 1213 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultracentrifugation, sample 2 |
Isolation/purification methods | Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
50
|
Experiment ID | 1214 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29127410
|
Organism | Homo sapiens |
Experiment description | Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. |
Authors | Benedikter BJ, Bouwman FG, Vajen T, Heinzmann ACA, Grauls G, Mariman EC, Wouters EFM, Savelkoul PH, Lopez-Iglesias C, Koenen RR, Rohde GGU, Stassen FRM. |
Journal name |
Sci Rep.
|
Publication year | 2017 |
Sample | Bronchial epithelial cells |
Sample name | Ultracentrifugation, sample 3 |
Isolation/purification methods | Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170061: EV-METRIC:62%, 50%, 50%
|
|
|
51
|
Experiment ID | 651 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29188495
|
Organism | Homo sapiens |
Experiment description | Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. |
Authors | Manek R, Moghieb A, Yang Z, Kumar D, Kobessiy F,Sarkis GA, Raghavan V, Wang KKW. |
Journal name |
Molecular Neurobiology
|
Publication year | 2018 |
Sample | Cerebrospinal fluid |
Sample name | Cerebrospinal Fluid - Traumatic brain injury |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
52
|
Experiment ID | 721 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
26148937
|
Organism | Homo sapiens |
Experiment description | Proteomics profiling of cholangiocarcinoma exosomes: A potential role of oncogenic protein transferring in cancer progression. |
Authors | Dutta S, Reamtong O, Panvongsa W, Kitdumrongthum S, Janpipatkul K, Sangvanich P, Piyachaturawat P, Chairoungdua A. |
Journal name |
Biochim Biophys Acta
|
Publication year | 2015 |
Sample | Cholangiocarcinoma cells |
Sample name | KKU-M213 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150040: EV-METRIC:11%
|
|
|
53
|
Experiment ID | 899 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
26100252
|
Organism | Homo sapiens |
Experiment description | Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts |
Authors | Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E. |
Journal name |
Blood
|
Publication year | 2015 |
Sample | Chronic lymphocytic leukemia cells |
Sample name | CLL cells - Rep 1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.15-1.17 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150015: EV-METRIC:22%, 44%
|
|
|
54
|
Experiment ID | 900 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
26100252
|
Organism | Homo sapiens |
Experiment description | Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts |
Authors | Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E. |
Journal name |
Blood
|
Publication year | 2015 |
Sample | Chronic lymphocytic leukemia cells |
Sample name | CLL cells - Rep 2 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.15-1.17 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150015: EV-METRIC:22%, 44%
|
|
|
55
|
Experiment ID | 901 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
26100252
|
Organism | Homo sapiens |
Experiment description | Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts |
Authors | Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E. |
Journal name |
Blood
|
Publication year | 2015 |
Sample | Chronic lymphocytic leukemia cells |
Sample name | JVM-3 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.15-1.17 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150015: EV-METRIC:22%, 44%
|
|
|
56
|
Experiment ID | 902 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry Western blotting
|
PubMed ID |
26100252
|
Organism | Homo sapiens |
Experiment description | Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts |
Authors | Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E, Berchem G, Moussay E. |
Journal name |
Blood
|
Publication year | 2015 |
Sample | Chronic lymphocytic leukemia cells |
Sample name | MEC-1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.15-1.17 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry FACS Western blotting |
EV-TRACK |
EV150015: EV-METRIC:22%, 44%
|
|
|
57
|
Experiment ID | 20 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry Western blotting
|
PubMed ID |
17956143
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human colorectal cancer cells. |
Authors | Choi DS, Lee JM, Park GW, Lim HW, Bang JY, Kim YK, Kwon KH, Kwon HJ, Kim KP, Gho YS |
Journal name |
JPR
|
Publication year | 2007 |
Sample | Colorectal cancer cells |
Sample name | HT29 |
Isolation/purification methods | Differential centrifugation Sucrose density gradient Diafiltration |
Flotation density | 1.16 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] Western blotting |
EV-TRACK |
-
|
|
|
58
|
Experiment ID | 21 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry | |
Supporting data | |
MS
| |
PubMed ID |
19837982
|
Organism | Homo sapiens |
Experiment description | Proteomic and bioinformatic analysis of immunoaffinity-purified exosomes derived from the human colon tumor cell line LIM1215. |
Authors | Suresh Mathivanan, Justin W.E. Lim, Bow J. Tauro, Hong Ji, Robert L. Moritz and Richard J. Simpson |
Journal name |
MCP
|
Publication year | 2009 |
Sample | Colorectal cancer cells |
Sample name | LIM1215 |
Isolation/purification methods | Filtration Ultracentrifugation Sucrose density gradient |
Flotation density | 1.10-1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [Orbitrap] Western blotting |
EV-TRACK |
EV100013: EV-METRIC:25%, 56%
|
|
|
59
|
Experiment ID | 303 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Western blotting
|
PubMed ID |
19930720
|
Organism | Homo sapiens |
Experiment description | Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells |
Authors | Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS |
Journal name |
BMC Genomics
|
Publication year | 2009 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | Differential centrifugation Ultrafiltration OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein mRNA |
Methods used in the study | Western blotting RT-PCR Microarray [Illumina] |
EV-TRACK |
-
|
|
|
60
|
Experiment ID | 303 |
Identified molecule | mrna
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray [Illumina]
|
PubMed ID |
19930720
|
Organism | Homo sapiens |
Experiment description | Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells |
Authors | Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS |
Journal name |
BMC Genomics
|
Publication year | 2009 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | Differential centrifugation Ultrafiltration OptiPrep density gradient |
Flotation density | 1.09 g/mL |
Molecules identified in the study | Protein mRNA |
Methods used in the study | Western blotting RT-PCR Microarray [Illumina] |
EV-TRACK |
-
|
|
|
61
|
Experiment ID | 347 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [Orbitrap]
|
PubMed ID |
22285593
|
Organism | Homo sapiens |
Experiment description | Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. |
Authors | Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ |
Journal name |
Methods
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | LIM1863 - Ultracentrifugation |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [Orbitrap] Western blotting |
EV-TRACK |
EV120024: EV-METRIC:25%, 33%, 50%
|
|
|
62
|
Experiment ID | 349 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [Orbitrap]
|
PubMed ID |
22285593
|
Organism | Homo sapiens |
Experiment description | Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. |
Authors | Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ |
Journal name |
Methods
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | LIM1863 - OptiPrep density gradient |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [Orbitrap] Western blotting |
EV-TRACK |
EV120024: EV-METRIC:25%, 33%, 50%
|
|
|
63
|
Experiment ID | 348 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [Orbitrap]
|
PubMed ID |
22285593
|
Organism | Homo sapiens |
Experiment description | Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. |
Authors | Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ |
Journal name |
Methods
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | LIM1863 - EpCAM immunoaffinity |
Isolation/purification methods | Differential centrifugation Filtration Immunoaffinity (EpCAM) Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [Orbitrap] Western blotting |
EV-TRACK |
EV120024: EV-METRIC:25%, 33%, 50%
|
|
|
64
|
Experiment ID | 458 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22740476
|
Organism | Homo sapiens |
Experiment description | Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. |
Authors | Lim JW, Mathias RA, Kapp EA, Layton MJ, Faux MC, Burgess AW, Ji H, Simpson RJ. |
Journal name |
Electrophoresis
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120074: EV-METRIC:11%
|
|
|
65
|
Experiment ID | 480 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23161513
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. |
Authors | Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | DKO-1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130004: EV-METRIC:44%
|
|
|
66
|
Experiment ID | 481 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23161513
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. |
Authors | Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | Dks-8 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130004: EV-METRIC:44%
|
|
|
67
|
Experiment ID | 482 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23161513
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. |
Authors | Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | DLD-1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130004: EV-METRIC:44%
|
|
|
68
|
Experiment ID | 486 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23230278
|
Organism | Homo sapiens |
Experiment description | Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. |
Authors | Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | A33 affinity purified exosomes-Colorectal cancer cells (LIM1863) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130020: EV-METRIC:38%
|
|
|
69
|
Experiment ID | 487 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23230278
|
Organism | Homo sapiens |
Experiment description | Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. |
Authors | Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | EpCAM affinity purified exosomes-Colorectal cancer cells (LIM1863) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130020: EV-METRIC:38%
|
|
|
70
|
Experiment ID | 488 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23230278
|
Organism | Homo sapiens |
Experiment description | Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. |
Authors | Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | Shed vesicles-Colorectal cancer cells (LIM1863) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130020: EV-METRIC:38%
|
|
|
71
|
Experiment ID | 517 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23585443
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of exosomes derived from human primary and metastatic colorectal cells reveal differential expression of key metastatic factors and signal transduction components. |
Authors | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130010: EV-METRIC:44%
|
|
|
72
|
Experiment ID | 518 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23585443
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of exosomes derived from human primary and metastatic colorectal cells reveal differential expression of key metastatic factors and signal transduction components. |
Authors | Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Colorectal cancer cells |
Sample name | SW620 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130010: EV-METRIC:44%
|
|
|
73
|
Experiment ID | 549 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles/Ectosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24009881
|
Organism | Homo sapiens |
Experiment description | Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells. |
Authors | Choi DS, Choi DY, Hong BS, Jang SC, Kim DK, Lee J, Kim YK, Kim KP, Gho YS. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | SW480 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120013: EV-METRIC:50%
|
|
|
74
|
Experiment ID | 550 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles/Microvesicles/Ectosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24009881
|
Organism | Homo sapiens |
Experiment description | Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells. |
Authors | Choi DS, Choi DY, Hong BS, Jang SC, Kim DK, Lee J, Kim YK, Kim KP, Gho YS. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Colorectal cancer cells |
Sample name | SW620 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120013: EV-METRIC:50%
|
|
|
75
|
Experiment ID | 587 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | Colo205 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
76
|
Experiment ID | 591 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Colorectal cancer cells |
Sample name | HT29 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
77
|
Experiment ID | 696 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | LIM1215- insulin induced |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
78
|
Experiment ID | 697 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | LIM1215- non-induced |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
79
|
Experiment ID | 1049 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics.
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | LIM1215 - NI |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
80
|
Experiment ID | 1050 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28842968
|
Organism | Homo sapiens |
Experiment description | Insulin Mediated Activation of PI3K/Akt Signalling Pathway Modifies the Proteomic Cargo of Extracellular Vesicles. |
Authors | Liem M, Ang CS, Mathivanan S. |
Journal name |
Proteomics.
|
Publication year | 2017 |
Sample | Colorectal cancer cells |
Sample name | lim1215 - II |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170021: EV-METRIC:44%, 44%
|
|
|
81
|
Experiment ID | 562 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F3 10K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
82
|
Experiment ID | 563 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F5 10K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.14 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
83
|
Experiment ID | 564 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F3 100K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
84
|
Experiment ID | 565 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ ORBITRAP]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (F5 100K) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation OptiPrep density gradient |
Flotation density | 1.14 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ ORBITRAP] |
EV-TRACK |
-
|
|
|
85
|
Experiment ID | 566 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ FUSION]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (Igg1 PD) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunobeads (Igg1 PD) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ FUSION] |
EV-TRACK |
-
|
|
|
86
|
Experiment ID | 567 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ FUSION]
|
PubMed ID |
26858453
|
Organism | Homo sapiens |
Experiment description | Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes |
Authors | Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thé C |
Journal name |
PNAS
|
Publication year | 2016 |
Sample | Dendritic cells |
Sample name | monocyte-derived dendritic cells (Igg1 FT) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunobeads (Igg1 FT) |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ FUSION] |
EV-TRACK |
-
|
|
|
87
|
Experiment ID | 925 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25483805
|
Organism | Homo sapiens |
Experiment description | Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties |
Authors | Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J. |
Journal name |
Sci Rep
|
Publication year | 2014 |
Sample | Embryonic kidney cells |
Sample name | HEK293T - P150 - Fraction 1.12 g/mL |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140018: EV-METRIC:56%, 56%
|
|
|
88
|
Experiment ID | 927 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25483805
|
Organism | Homo sapiens |
Experiment description | Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties |
Authors | Vyas N, Walvekar A, Tate D, Lakshmanan V, Bansal D, Lo Cicero A, Raposo G, Palakodeti D, Dhawan J. |
Journal name |
Sci Rep
|
Publication year | 2014 |
Sample | Embryonic kidney cells |
Sample name | HEK293T - P450 - Fraction 1.12 g/mL |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.09-1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140018: EV-METRIC:56%, 56%
|
|
|
89
|
Experiment ID | 385 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18563738
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. |
Authors | Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. |
Journal name |
Proteomics
|
Publication year | 2008 |
Sample | Endothelial cells |
Sample name | Endothelial cells (HUVEC) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
90
|
Experiment ID | 386 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18563738
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. |
Authors | Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. |
Journal name |
Proteomics
|
Publication year | 2008 |
Sample | Endothelial cells |
Sample name | Treated by PAI-1-Endothelial cell (HUVEC) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
91
|
Experiment ID | 387 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18563738
|
Organism | Homo sapiens |
Experiment description | Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles. |
Authors | Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. |
Journal name |
Proteomics
|
Publication year | 2008 |
Sample | Endothelial cells |
Sample name | Treated by TNF-alpha-Endothelial cells (HUVEC) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
92
|
Experiment ID | 393 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19369228
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. |
Authors | Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, Boulanger CM, Westwood N, Urbich C, Willeit J, Steiner M, Breuss J, Xu Q, Kiechl S, Mayr M. |
Journal name |
Blood
|
Publication year | 2009 |
Sample | Endothelial cells |
Sample name | Normal-Endothelial progenitor cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
93
|
Experiment ID | 502 |
Identified molecule | protein
|
Extracellular vesicle type | Membrane vesicles/Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23436686
|
Organism | Homo sapiens |
Experiment description | A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells. |
Authors | Pallet N, Sirois I, Bell C, Hanafi LA, Hamelin K, Dieudé M, Rondeau C, Thibault P, Desjardins M, Hebert MJ. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Endothelial cells |
Sample name | Serum-starved-Human umbilical vascular endothelial cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130048: EV-METRIC:44%
|
|
|
94
|
Experiment ID | 551 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
24009886
|
Organism | Homo sapiens |
Experiment description | Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. |
Authors | de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW. |
Journal name |
J Extracell Vesicles
|
Publication year | 2012 |
Sample | Endothelial cells |
Sample name | Stressed (hypoxia, TNF-alpha-induced activation, high glucose and mannose concentrations)-Endothelial cells (HMEC-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120004: EV-METRIC:67%
|
|
|
95
|
Experiment ID | 4 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
11487543
|
Organism | Homo sapiens |
Experiment description | Intestinal epithelial cells secrete exosome-like vesicles. |
Authors | van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M |
Journal name |
GASTRO
|
Publication year | 2001 |
Sample | Epithelial cells |
Sample name | HT29-19A T84-DRB1*0401/CIITA (intestinal epithelial cells) |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | 1.19 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF] Western blotting |
EV-TRACK |
-
|
|
|
96
|
Experiment ID | 177 |
Identified molecule | protein
|
Extracellular vesicle type | Membrane blebs |
Identification method | Mass spectrometry [LTQ-FT Ultra]
|
PubMed ID |
19567368
|
Organism | Homo sapiens |
Experiment description | Proteomics characterization of cell membrane blebs in human retinal pigment epithelium cells |
Authors | Alcazar O, Hawkridge AM, Collier TS, Cousins SW, Bhattacharya SK, Muddiman DC, Marin-Castano ME |
Journal name |
Mol Cell Proteomics
|
Publication year | 2009 |
Sample | Epithelial cells |
Sample name | ARPE-19 (Retinal epithelial cells) |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Mass spectrometry [LTQ-FT Ultra] |
EV-TRACK |
-
|
|
|
97
|
Experiment ID | 861 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25776846
|
Organism | Homo sapiens |
Experiment description | Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens |
Authors | Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, Ekwall O. |
Journal name |
Immunol Cell Biol
|
Publication year | 2015 |
Sample | Epithelial cells |
Sample name | Thymic tissue - culture 1 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150045: EV-METRIC:25%
|
|
|
98
|
Experiment ID | 862 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25776846
|
Organism | Homo sapiens |
Experiment description | Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens |
Authors | Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, Ekwall O. |
Journal name |
Immunol Cell Biol
|
Publication year | 2015 |
Sample | Epithelial cells |
Sample name | Thymic tissue - culture 2 |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150045: EV-METRIC:25%
|
|
|
99
|
Experiment ID | 203 |
Identified molecule | mrna
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
19011622
|
Organism | Homo sapiens |
Experiment description | Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers |
Authors | Skog J, Wüer T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO |
Journal name |
Nat Cell Biol
|
Publication year | 2008 |
Sample | Glioblastoma cells |
Sample name | Glioblastoma cells |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration |
Flotation density | - |
Molecules identified in the study | Protein miRNA mRNA |
Methods used in the study | RT-PCR Antibody array Microarray |
EV-TRACK |
-
|
|
|
100
|
Experiment ID | 494 |
Identified molecule | mRNA
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
23344721
|
Organism | Homo sapiens |
Experiment description | miR-1289 and Zipcode-like Sequence Enrich mRNAs in Microvesicles. |
Authors | Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, Fan JB, Breakefield XO, Saydam O. |
Journal name |
Mol Ther Nucleic Acids
|
Publication year | 2012 |
Sample | Glioblastoma cells |
Sample name | Primary glioblastoma multiforme cells (11/5) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
-
|
|
|
101
|
Experiment ID | 495 |
Identified molecule | mRNA
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
23344721
|
Organism | Homo sapiens |
Experiment description | miR-1289 and Zipcode-like Sequence Enrich mRNAs in Microvesicles. |
Authors | Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, Fan JB, Breakefield XO, Saydam O. |
Journal name |
Mol Ther Nucleic Acids
|
Publication year | 2012 |
Sample | Glioblastoma cells |
Sample name | Primary glioblastoma multiforme cells (20/3) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
-
|
|
|
102
|
Experiment ID | 722 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25802036
|
Organism | Homo sapiens |
Experiment description | Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells. |
Authors | de Vrij J, Maas SL, Kwappenberg KM, Schnoor R, Kleijn A, Dekker L, Luider TM, de Witte LD, Litjens M, van Strien ME, Hol EM, Kroonen J, Robe PA, Lamfers ML, Schilham MW, Broekman ML. |
Journal name |
Int J Cancer
|
Publication year | 2015 |
Sample | Glioblastoma cells |
Sample name | U87.MG/EGFRvIII |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150064: EV-METRIC:0%, 0%, 29%
|
|
|
103
|
Experiment ID | 1039 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27770278
|
Organism | Homo sapiens |
Experiment description | Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. |
Authors | Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. |
Journal name |
J Neurooncol
|
Publication year | 2017 |
Sample | Glioblastoma cells |
Sample name | A172 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.09.1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
104
|
Experiment ID | 1040 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27770278
|
Organism | Homo sapiens |
Experiment description | Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. |
Authors | Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. |
Journal name |
J Neurooncol
|
Publication year | 2017 |
Sample | Glioblastoma cells |
Sample name | LN229 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.09.1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
105
|
Experiment ID | 1041 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27770278
|
Organism | Homo sapiens |
Experiment description | Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. |
Authors | Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. |
Journal name |
J Neurooncol
|
Publication year | 2017 |
Sample | Glioblastoma cells |
Sample name | U87MG |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.09.1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
106
|
Experiment ID | 1042 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27770278
|
Organism | Homo sapiens |
Experiment description | Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. |
Authors | Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. |
Journal name |
J Neurooncol
|
Publication year | 2017 |
Sample | Glioblastoma cells |
Sample name | U251 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.09.1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
107
|
Experiment ID | 1043 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27770278
|
Organism | Homo sapiens |
Experiment description | Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. |
Authors | Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. |
Journal name |
J Neurooncol
|
Publication year | 2017 |
Sample | Glioblastoma cells |
Sample name | T98G |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.09.1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
108
|
Experiment ID | 1044 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
27770278
|
Organism | Homo sapiens |
Experiment description | Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease. |
Authors | Mallawaaratchy DM, Hallal S, Russell B, Ly L, Ebrahimkhani S, Wei H, Christopherson RI, Buckland ME, Kaufman KL. |
Journal name |
J Neurooncol
|
Publication year | 2017 |
Sample | Glioblastoma cells |
Sample name | CCF-STTG1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Filtration Density gradient centrifugation |
Flotation density | 1.09.1.11 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
109
|
Experiment ID | 1071 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
29937354
|
Organism | Homo sapiens |
Experiment description | Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors. |
Authors | Pavlyukov MS, Yu H, Bastola S, Minata M, Shender VO, Lee Y, Zhang S, Wang J, Komarova S, Wang J, Yamaguchi S, Alsheikh HA, Shi J, Chen D, Mohyeldin A, Kim SH, Shin YJ, Anufrieva K, Evtushenko EG, Antipova NV, Arapidi GP, Govorun V, Pestov NB, Shakhparonov MI, Lee LJ, Nam DH, Nakano I. |
Journal name |
Cancer Cell
|
Publication year | 2018 |
Sample | Glioblastoma cells |
Sample name | Lethally irradiated GBM157 - apoExo - biorep1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
-
|
|
|
110
|
Experiment ID | 1072 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
29937354
|
Organism | Homo sapiens |
Experiment description | Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors. |
Authors | Pavlyukov MS, Yu H, Bastola S, Minata M, Shender VO, Lee Y, Zhang S, Wang J, Komarova S, Wang J, Yamaguchi S, Alsheikh HA, Shi J, Chen D, Mohyeldin A, Kim SH, Shin YJ, Anufrieva K, Evtushenko EG, Antipova NV, Arapidi GP, Govorun V, Pestov NB, Shakhparonov MI, Lee LJ, Nam DH, Nakano I. |
Journal name |
Cancer Cell
|
Publication year | 2018 |
Sample | Glioblastoma cells |
Sample name | Lethally irradiated GBM157 - apoExo - biorep2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
111
|
Experiment ID | 1274 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23807490
|
Organism | Homo sapiens |
Experiment description | Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. |
Authors | Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM. |
Journal name |
RNA Biol.
|
Publication year | 2013 |
Sample | Glioblastoma cells |
Sample name | U251 cells |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein miRNA |
Methods used in the study | Mass spectrometry Microarray |
EV-TRACK |
EV130098: EV-METRIC:29%
|
|
|
112
|
Experiment ID | 1218 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
27872147
|
Organism | Homo sapiens |
Experiment description | Primary Human and Rat .-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. |
Authors | Cianciaruso C, Phelps EA, Pasquier M, Hamelin R, Demurtas D, Alibashe Ahmed M, Piemonti L, Hirosue S, Swartz MA, De Palma M, Hubbell JA, Baekkeskov S. |
Journal name |
Diabetes.
|
Publication year | 2017 |
Sample | Islets |
Sample name | Human IL-1. (20 units/mL) |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Mass spectrometry |
EV-TRACK |
EV160008: EV-METRIC:55%, 44%, 33%
|
|
|
113
|
Experiment ID | 594 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | 786-O |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
114
|
Experiment ID | 595 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | A498 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
115
|
Experiment ID | 596 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | ACHN |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
116
|
Experiment ID | 597 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | CAKI |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
117
|
Experiment ID | 599 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | SN12C |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
118
|
Experiment ID | 600 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | TK-10 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
119
|
Experiment ID | 601 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Kidney cancer cells |
Sample name | UO-31 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
120
|
Experiment ID | 603 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Leukemia cells |
Sample name | HL-60 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
121
|
Experiment ID | 605 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Leukemia cells |
Sample name | MOLT-4 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
122
|
Experiment ID | 606 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Leukemia cells |
Sample name | RPMI-8226 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
123
|
Experiment ID | 607 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Leukemia cells |
Sample name | SR |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
124
|
Experiment ID | 1248 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24939845
|
Organism | Homo sapiens |
Experiment description | Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. |
Authors | Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. |
Journal name |
J Biol Chem.
|
Publication year | 2014 |
Sample | Leukemia cells |
Sample name | CEM - uninfected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140028: EV-METRIC:33%
|
|
|
125
|
Experiment ID | 1249 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24939845
|
Organism | Homo sapiens |
Experiment description | Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. |
Authors | Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. |
Journal name |
J Biol Chem.
|
Publication year | 2014 |
Sample | Leukemia cells |
Sample name | C81 - HTLV-1 infected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140028: EV-METRIC:33%
|
|
|
126
|
Experiment ID | 1250 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24939845
|
Organism | Homo sapiens |
Experiment description | Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. |
Authors | Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. |
Journal name |
J Biol Chem.
|
Publication year | 2014 |
Sample | Leukemia cells |
Sample name | MT2 - HTLV-1 infected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140028: EV-METRIC:33%
|
|
|
127
|
Experiment ID | 1251 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24939845
|
Organism | Homo sapiens |
Experiment description | Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. |
Authors | Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. |
Journal name |
J Biol Chem.
|
Publication year | 2014 |
Sample | Leukemia cells |
Sample name | ED-40515 -HTLV-1 infected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140028: EV-METRIC:33%
|
|
|
128
|
Experiment ID | 1290 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19912576
|
Organism | Homo sapiens |
Experiment description | HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. |
Authors | Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM. |
Journal name |
Traffic.
|
Publication year | 2010 |
Sample | Lymphoblasts |
Sample name | Jurkat cells with Nef-GFP |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV100021: EV-METRIC:33%, 25%
|
|
|
129
|
Experiment ID | 1291 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19912576
|
Organism | Homo sapiens |
Experiment description | HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. |
Authors | Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM. |
Journal name |
Traffic.
|
Publication year | 2010 |
Sample | Lymphoblasts |
Sample name | SupT1 cells with Nef-GFP |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV100021: EV-METRIC:33%, 25%
|
|
|
130
|
Experiment ID | 1014 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22711894
|
Organism | Homo sapiens |
Experiment description | Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. |
Authors | Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. |
Journal name |
J Immunol.
|
Publication year | 2012 |
Sample | Macrophages |
Sample name | Monocyte-derived macrophages - CHMP4/TSG101 pulldown exosomes |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein Lipids |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120137: EV-METRIC:17%, 0%
|
|
|
131
|
Experiment ID | 1015 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22711894
|
Organism | Homo sapiens |
Experiment description | Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. |
Authors | Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. |
Journal name |
J Immunol.
|
Publication year | 2012 |
Sample | Macrophages |
Sample name | Monocyte-derived macrophages - Myosin B pulldown exosomes |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein Lipids |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120137: EV-METRIC:17%, 0%
|
|
|
132
|
Experiment ID | 1017 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22711894
|
Organism | Homo sapiens |
Experiment description | Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. |
Authors | Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. |
Journal name |
J Immunol.
|
Publication year | 2012 |
Sample | Macrophages |
Sample name | Monocyte-derived macrophages - Vinculin/Talin pulldown exosomes |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein Lipids |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120137: EV-METRIC:17%, 0%
|
|
|
133
|
Experiment ID | 669 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
29953960
|
Organism | Homo sapiens |
Experiment description | Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. |
Authors | Singhto N, Thongboonkerd V. |
Journal name |
J Proteomics
|
Publication year | 2018 |
Sample | Macrophages |
Sample name | U937- Human monocytic cell line differentiated to macrophages (Control) |
Isolation/purification methods | Microfiltration Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
-
|
|
|
134
|
Experiment ID | 670 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
29953960
|
Organism | Homo sapiens |
Experiment description | Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. |
Authors | Singhto N, Thongboonkerd V. |
Journal name |
J Proteomics
|
Publication year | 2018 |
Sample | Macrophages |
Sample name | U937- Human monocytic cell line differentiated to macrophages (COM treated) |
Isolation/purification methods | Microfiltration Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
-
|
|
|
135
|
Experiment ID | 51 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
14975938
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes isolated from human malignant pleural effusions. |
Authors | Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN |
Journal name |
AJRCMB
|
Publication year | 2004 |
Sample | Malignant pleural effusions |
Sample name | Pleural Fluid - Breast cancer |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF] Western blotting |
EV-TRACK |
-
|
|
|
136
|
Experiment ID | 52 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
14975938
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes isolated from human malignant pleural effusions. |
Authors | Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN |
Journal name |
AJRCMB
|
Publication year | 2004 |
Sample | Malignant pleural effusions |
Sample name | Pleural Fluid - Lung cancer |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF] Western blotting |
EV-TRACK |
-
|
|
|
137
|
Experiment ID | 53 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
14975938
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes isolated from human malignant pleural effusions. |
Authors | Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN |
Journal name |
AJRCMB
|
Publication year | 2004 |
Sample | Malignant pleural effusions |
Sample name | Pleural Fluid - Mesothelioma |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF] Western blotting |
EV-TRACK |
-
|
|
|
138
|
Experiment ID | 54 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
14975938
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes isolated from human malignant pleural effusions. |
Authors | Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN |
Journal name |
AJRCMB
|
Publication year | 2004 |
Sample | Malignant pleural effusions |
Sample name | Pleural Fluid - Ovarian adenocarcioma |
Isolation/purification methods | Differential centrifugation Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
-
|
|
|
139
|
Experiment ID | 519 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles/Ectosomes/Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23585444
|
Organism | Homo sapiens |
Experiment description | Identification and characterization of proteins isolated from microvesicles derived from human lung cancer pleural effusions. |
Authors | Park JO, Choi DY, Choi DS, Kim HJ, Kang JW, Jung JH, Lee JH, Kim J, Freeman MR, Lee KY, Gho YS, Kim KP. |
Journal name |
Proteomics
|
Publication year | 2013 |
Sample | Malignant pleural effusions |
Sample name | Non-small cell lung cancer patient-Lung cancer pleural effusion |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130049: EV-METRIC:38%
|
|
|
140
|
Experiment ID | 453 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22635005
|
Organism | Homo sapiens |
Experiment description | Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. |
Authors | Peinado H, Alecković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. |
Journal name |
Nat Med
|
Publication year | 2012 |
Sample | Melanoma cells |
Sample name | B16-F10, SK-MEL-202, SK-MEL035, SK-MEL-265 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120019: EV-METRIC:44%, 44%, 44%
|
|
|
141
|
Experiment ID | 496 |
Identified molecule | mRNA
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
23344721
|
Organism | Homo sapiens |
Experiment description | miR-1289 and Zipcode-like Sequence Enrich mRNAs in Microvesicles. |
Authors | Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, Fan JB, Breakefield XO, Saydam O. |
Journal name |
Mol Ther Nucleic Acids
|
Publication year | 2012 |
Sample | Melanoma cells |
Sample name | Primary malignant melanoma cells (0105) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
-
|
|
|
142
|
Experiment ID | 497 |
Identified molecule | mRNA
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
23344721
|
Organism | Homo sapiens |
Experiment description | miR-1289 and Zipcode-like Sequence Enrich mRNAs in Microvesicles. |
Authors | Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, Fan JB, Breakefield XO, Saydam O. |
Journal name |
Mol Ther Nucleic Acids
|
Publication year | 2012 |
Sample | Melanoma cells |
Sample name | Primary malignant melanoma cells (0664) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
-
|
|
|
143
|
Experiment ID | 621 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Melanoma cells |
Sample name | SK-MEL-2 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
144
|
Experiment ID | 622 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Melanoma cells |
Sample name | SK-MEL-28 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
145
|
Experiment ID | 623 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Melanoma cells |
Sample name | SK-MEL-5 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
146
|
Experiment ID | 986 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
25261472
|
Organism | Homo sapiens |
Experiment description | Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment. |
Authors | Liang Y, Eng WS, Colquhoun DR, Dinglasan RR, Graham DR, Mahal LK. |
Journal name |
J Biol Chem.
|
Publication year | 2014 |
Sample | Melanoma cells |
Sample name | SK-MEL-5 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140188: EV-METRIC:22%
|
|
|
147
|
Experiment ID | 126 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [LTQ-FT Ultra]
|
PubMed ID |
Unpublished / Not applicable
|
Organism | Homo sapiens |
Experiment description | Mesenchymal Stem Cell Exosomes: The Future MSC-based Therapy? |
Authors | Ruenn Chai Lai, Ronne Wee Yeh Yeo, Soon Sim Tan, Bin Zhang, Yijun Yin, Newman Siu Kwan Sze, Andre Choo, and Sai Kiang Lim |
Journal name |
Mesenchymal Stem Cell Therapy
|
Publication year | 2011 |
Sample | Mesenchymal stem cells |
Sample name | huES9.E1 |
Isolation/purification methods | HPLC |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Antibody array Mass spectrometry |
EV-TRACK |
-
|
|
|
148
|
Experiment ID | 244 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry[Q-TOF] Western blotting
|
PubMed ID |
22148876
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human mesenchymal stem cells |
Authors | Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP, Kim DW |
Journal name |
J Proteome Res
|
Publication year | 2011 |
Sample | Mesenchymal stem cells |
Sample name | Mesenchymal stem cells - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultrafiltration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Mass spectrometry[QTOF] |
EV-TRACK |
-
|
|
|
149
|
Experiment ID | 310 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry[Q-TOF] Western blotting
|
PubMed ID |
22148876
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human mesenchymal stem cells |
Authors | Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP, Kim DW |
Journal name |
J Proteome Res
|
Publication year | 2011 |
Sample | Mesenchymal stem cells |
Sample name | Mesenchymal stem cells - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultrafiltration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Mass spectrometry[QTOF] |
EV-TRACK |
-
|
|
|
150
|
Experiment ID | 311 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry[Q-TOF] Western blotting
|
PubMed ID |
22148876
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of microvesicles derived from human mesenchymal stem cells |
Authors | Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP, Kim DW |
Journal name |
J Proteome Res
|
Publication year | 2011 |
Sample | Mesenchymal stem cells |
Sample name | Mesenchymal stem cells - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultrafiltration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting Mass spectrometry[QTOF] |
EV-TRACK |
-
|
|
|
151
|
Experiment ID | 394 |
Identified molecule | mRNA
|
Extracellular vesicle type | Microvesicles |
Identification method | Microarray
|
PubMed ID |
19389847
|
Organism | Homo sapiens |
Experiment description | Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. |
Authors | Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G. |
Journal name |
J Am Soc Nephrol
|
Publication year | 2009 |
Sample | Mesenchymal stem cells |
Sample name | Normal-Mesenchymal stem cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
-
|
|
|
152
|
Experiment ID | 25 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting Mass spectrometry
|
PubMed ID |
15111327
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of exosomes secreted by human mesothelioma cells. |
Authors | Hegmans JP, Bard MP, Hemmes A, Luider TM, Kleijmeer MJ, Prins JB, Zitvogel L, Burgers SA, Hoogsteden HC, Lambrecht BN. |
Journal name |
AJP
|
Publication year | 2004 |
Sample | Mesothelioma cells |
Sample name | PMR-MM7 PMR-MM8 |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF] Western blotting |
EV-TRACK |
-
|
|
|
153
|
Experiment ID | 401 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
154
|
Experiment ID | 402 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Stimulated by IgG-Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
155
|
Experiment ID | 403 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Stimulated by LPS-Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
156
|
Experiment ID | 404 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
19548909
|
Organism | Homo sapiens |
Experiment description | Differential stimulation of monocytic cells results in distinct populations of microparticles. |
Authors | Bernimoulin M, Waters EK, Foy M, Steele BM, Sullivan M, Falet H, Walsh MT, Barteneva N, Geng JG, Hartwig JH, Maguire PB, Wagner DD. |
Journal name |
J Thromb Haemost
|
Publication year | 2009 |
Sample | Monocytes |
Sample name | Stimulated by P-selectin-Ig-Monocytes (THP-1) |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
157
|
Experiment ID | 467 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23000592
|
Organism | Homo sapiens |
Experiment description | In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. |
Authors | Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain챕 J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Neonatal myoblast cells |
Sample name | Patient of developmental heart defect_exosome-Neonatal myoblast cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
158
|
Experiment ID | 468 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23000592
|
Organism | Homo sapiens |
Experiment description | In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. |
Authors | Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain챕 J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G. |
Journal name |
J Proteomics
|
Publication year | 2012 |
Sample | Neonatal myoblast cells |
Sample name | Patient of developmental heart defect_microparticle-Neonatal myoblast cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
159
|
Experiment ID | 556 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
24069378
|
Organism | Homo sapiens |
Experiment description | Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. |
Authors | Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Neuroblastoma cells |
Sample name | HTLA-230 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130101: EV-METRIC:38%, 14%
|
|
|
160
|
Experiment ID | 526 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23660474
|
Organism | Homo sapiens |
Experiment description | Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. |
Authors | Dalli J, Montero Melendez T, Norling LV, Yin X, Hinds C, Haskard D, Mayr M, Perretti M. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2013 |
Sample | Neutrophils |
Sample name | Stimulated in fluid phase-Neutrophil |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
161
|
Experiment ID | 527 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23660474
|
Organism | Homo sapiens |
Experiment description | Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. |
Authors | Dalli J, Montero Melendez T, Norling LV, Yin X, Hinds C, Haskard D, Mayr M, Perretti M. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2013 |
Sample | Neutrophils |
Sample name | Stimulated in immobile phase-Neutrophil |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
162
|
Experiment ID | 492 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23333927
|
Organism | Homo sapiens |
Experiment description | Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors | Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Ovarian cancer cells |
Sample name | IGROV1 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130002: EV-METRIC:67%, 56%
|
|
|
163
|
Experiment ID | 493 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23333927
|
Organism | Homo sapiens |
Experiment description | Characterization and proteomic analysis of ovarian cancer-derived exosomes. |
Authors | Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. |
Journal name |
J Proteomics
|
Publication year | 2013 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-3 |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130002: EV-METRIC:67%, 56%
|
|
|
164
|
Experiment ID | 628 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-4 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
165
|
Experiment ID | 629 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | OVCAR-5 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
166
|
Experiment ID | 631 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | SK-OV-3 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
167
|
Experiment ID | 632 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Ovarian cancer cells |
Sample name | NCI-ADR-RES |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
168
|
Experiment ID | 992 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
169
|
Experiment ID | 993 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR433 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
170
|
Experiment ID | 994 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | OVCAR5 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
171
|
Experiment ID | 995 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24434149
|
Organism | Homo sapiens |
Experiment description | In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. |
Authors | Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T. |
Journal name |
Biochem Biophys Res Commun.
|
Publication year | 2014 |
Sample | Ovarian cancer cells |
Sample name | SKOV3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140099: EV-METRIC:44%
|
|
|
172
|
Experiment ID | 1267 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24218614
|
Organism | Homo sapiens |
Experiment description | Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. |
Authors | Shin SJ, Smith JA, Rezniczek GA, Pan S, Chen R, Brentnall TA, Wiche G, Kelly KA. |
Journal name |
Proc Natl Acad Sci U S A.
|
Publication year | 2013 |
Sample | Pancreatic adenocarcinoma cells |
Sample name | Bxpc 3 Cells |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
EV130114: EV-METRIC:33%, 0%, 17%
|
|
|
173
|
Experiment ID | 1268 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24218614
|
Organism | Homo sapiens |
Experiment description | Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. |
Authors | Shin SJ, Smith JA, Rezniczek GA, Pan S, Chen R, Brentnall TA, Wiche G, Kelly KA. |
Journal name |
Proc Natl Acad Sci U S A.
|
Publication year | 2013 |
Sample | Pancreatic adenocarcinoma cells |
Sample name | Panc-1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
EV130114: EV-METRIC:33%, 0%, 17%
|
|
|
174
|
Experiment ID | 1269 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24218614
|
Organism | Homo sapiens |
Experiment description | Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. |
Authors | Shin SJ, Smith JA, Rezniczek GA, Pan S, Chen R, Brentnall TA, Wiche G, Kelly KA. |
Journal name |
Proc Natl Acad Sci U S A.
|
Publication year | 2013 |
Sample | Pancreatic adenocarcinoma cells |
Sample name | L3.6pl- wild type cells |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV130114: EV-METRIC:33%, 0%, 17%
|
|
|
175
|
Experiment ID | 739 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25157233
|
Organism | Homo sapiens |
Experiment description | Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. |
Authors | Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, Illanes SE, Mitchell MD, Rice GE. |
Journal name |
Front Pharmacol
|
Publication year | 2014 |
Sample | Placenta |
Sample name | HTR-8/Svneo |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140214: EV-METRIC:33%
|
|
|
176
|
Experiment ID | 738 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25157233
|
Organism | Homo sapiens |
Experiment description | Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration. |
Authors | Salomon C, Yee S, Scholz-Romero K, Kobayashi M, Vaswani K, Kvaskoff D, Illanes SE, Mitchell MD, Rice GE. |
Journal name |
Front Pharmacol
|
Publication year | 2014 |
Sample | Placenta choriocarcinoma cells |
Sample name | JEG-3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140214: EV-METRIC:33%
|
|
|
177
|
Experiment ID | 1135 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23861904
|
Organism | Homo sapiens |
Experiment description | Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. |
Authors | Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, Rice GE. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Placental mesenchymal stem cells |
Sample name | pMSC's in 1% Oxygen |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Ultrafiltration Density gradient centrifugation |
Flotation density | 1.12 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130055: EV-METRIC:33%
|
|
|
178
|
Experiment ID | 418 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
21049385
|
Organism | Homo sapiens |
Experiment description | The plasma microparticle proteome. |
Authors | Little KM1, Smalley DM, Harthun NL, Ley K. |
Journal name |
Semin Thromb Hemost
|
Publication year | 2010 |
Sample | Plasma |
Sample name | Normal donors-Plasma |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
179
|
Experiment ID | 443 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
22329422
|
Organism | Homo sapiens |
Experiment description | Quantitative proteome profiling of normal human circulating microparticles. |
Authors | Østergaard O, Nielsen CT, Iversen LV, Jacobsen S, Tanassi JT, Heegaard NH. |
Journal name |
J Proteome Res
|
Publication year | 2012 |
Sample | Plasma |
Sample name | Normal-Platelet-poor plasma |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
180
|
Experiment ID | 473 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23056467
|
Organism | Homo sapiens |
Experiment description | Cause or Effect of Arteriogenesis: Compositional Alterations of Microparticles from CAD Patients Undergoing External Counterpulsation Therapy. |
Authors | Al Kaabi A, Traupe T, Stutz M, Buchs N, Heller M. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Plasma |
Sample name | Patients of external counterpulsation therapy-Blood |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
181
|
Experiment ID | 863 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22046311
|
Organism | Mus musculus |
Experiment description | Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections |
Authors | Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. |
Journal name |
PLoS One
|
Publication year | 2011 |
Sample | Plasma |
Sample name | Peripheral blood plasma - P. yoelii 17X infected |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | FACS Mass spectrometry |
EV-TRACK |
EV110102: EV-METRIC:25%, 25%
|
|
|
182
|
Experiment ID | 369 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
16212402
|
Organism | Homo sapiens |
Experiment description | The platelet microparticle proteome. |
Authors | Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. |
Journal name |
J Proteome Res
|
Publication year | 2005 |
Sample | Platelets |
Sample name | Normal donors-Platelets |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
183
|
Experiment ID | 520 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
23601281
|
Organism | Homo sapiens |
Experiment description | Proteomic characterization of human platelet-derived microparticles. |
Authors | Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Laganà A. |
Journal name |
Anal Chim Acta
|
Publication year | 2013 |
Sample | Platelets |
Sample name | Platelets purifird from blood |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
184
|
Experiment ID | 138 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [QTOF] | |
Supporting data | |
MSS | |
PubMed ID |
22723089
|
Organism | Homo sapiens |
Experiment description | Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. |
Authors | Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year | 2012 |
Sample | Prostate cancer cells |
Sample name | DU145 - Rep 2 |
Isolation/purification methods | Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QTOF] |
EV-TRACK |
EV120018: EV-METRIC:38%
|
|
|
185
|
Experiment ID | 139 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [QTOF] | |
Supporting data | |
MSS | |
PubMed ID |
22723089
|
Organism | Homo sapiens |
Experiment description | Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. |
Authors | Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year | 2012 |
Sample | Prostate cancer cells |
Sample name | DU145 - Rep 3 |
Isolation/purification methods | Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QTOF] |
EV-TRACK |
EV120018: EV-METRIC:38%
|
|
|
186
|
Experiment ID | 140 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [QTOF] | |
Supporting data | |
MSS | |
PubMed ID |
22723089
|
Organism | Homo sapiens |
Experiment description | Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. |
Authors | Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year | 2012 |
Sample | Prostate cancer cells |
Sample name | VCaP - Rep 2 |
Isolation/purification methods | Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QTOF] |
EV-TRACK |
EV120018: EV-METRIC:38%
|
|
|
187
|
Experiment ID | 141 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [QTOF] | |
Supporting data | |
MSS | |
PubMed ID |
22723089
|
Organism | Homo sapiens |
Experiment description | Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. |
Authors | Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year | 2012 |
Sample | Prostate cancer cells |
Sample name | VCaP - Rep 3 |
Isolation/purification methods | Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QTOF] |
EV-TRACK |
EV120018: EV-METRIC:38%
|
|
|
188
|
Experiment ID | 145 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [QTOF] | |
Supporting data | |
MSS | |
PubMed ID |
22723089
|
Organism | Homo sapiens |
Experiment description | Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. |
Authors | Hosseini-Beheshti E, Guns ES. |
Journal name |
MCP
|
Publication year | 2012 |
Sample | Prostate cancer cells |
Sample name | C4-2 - Rep 3 |
Isolation/purification methods | Sucrose density gradient |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QTOF] |
EV-TRACK |
EV120018: EV-METRIC:38%
|
|
|
189
|
Experiment ID | 277 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry [Q-TOF]
|
PubMed ID |
22030351
|
Organism | Homo sapiens |
Experiment description | Expression of PTRF in PC-3 cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways |
Authors | Inder KL, Zheng YZ, Davis MJ, Moon H, Loo D, Nguyen H, Clements JA, Parton RG, Foster LJ, Hill MM |
Journal name |
MCP
|
Publication year | 2011 |
Sample | Prostate cancer cells |
Sample name | PC-3 |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [QTOF] |
EV-TRACK |
-
|
|
|
190
|
Experiment ID | 634 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry [LTQ]
|
PubMed ID |
27894104
|
Organism | Homo sapiens |
Experiment description | Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. |
Authors | Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | PC-3 |
Isolation/purification methods | Differential centrifugation Polymer-based precipitation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] |
EV-TRACK |
-
|
|
|
191
|
Experiment ID | 841 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
192
|
Experiment ID | 842 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
193
|
Experiment ID | 843 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
194
|
Experiment ID | 845 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
195
|
Experiment ID | 846 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP - in CSS with DHT treatment - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
196
|
Experiment ID | 851 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
197
|
Experiment ID | 852 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
198
|
Experiment ID | 853 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
199
|
Experiment ID | 855 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
200
|
Experiment ID | 856 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
201
|
Experiment ID | 857 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP - in CSS with DHT treatment - Rep 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
202
|
Experiment ID | 887 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25102470
|
Organism | Homo sapiens |
Experiment description | Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro |
Authors | Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. |
Journal name |
Biochim Biophys Acta
|
Publication year | 2014 |
Sample | Prostate cancer cells |
Sample name | PC3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.10-1.20 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140013: EV-METRIC:56%
|
|
|
203
|
Experiment ID | 963 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25844599
|
Organism | Homo sapiens |
Experiment description | Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors | Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, UlléA, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | DU145 Tax-Sen |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.12-1.19 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV150027: EV-METRIC:11%, 56%
|
|
|
204
|
Experiment ID | 964 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
25844599
|
Organism | Homo sapiens |
Experiment description | Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel. |
Authors | Kharaziha P, Chioureas D, Rutishauser D, Baltatzis G, Lennartsson L, Fonseca P, Azimi A, Hultenby K, Zubarev R, UlléA, Yachnin J, Nilsson S, Panaretakis T. |
Journal name |
Oncotarget
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | DU145 Tax-Res |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.13-1.18 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV150027: EV-METRIC:11%, 56%
|
|
|
205
|
Experiment ID | 1121 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24347249
|
Organism | Homo sapiens |
Experiment description | Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. |
Authors | Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. |
Journal name |
Mol Carcinog
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | LNCaP- Hypoxic |
Isolation/purification methods | Differential centrifugation Ultracentrifugation ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140124: EV-METRIC:43%, 25%
|
|
|
206
|
Experiment ID | 1192 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | LNCaP, EtOH |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
207
|
Experiment ID | 1194 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP, DHT treatment |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
208
|
Experiment ID | 1195 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28881726
|
Organism | Homo sapiens |
Experiment description | Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. |
Authors | Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM; Australian Prostate Cancer Collaboration BioResource, Hill MM, Nelson CC. |
Journal name |
Oncotarget.
|
Publication year | 2016 |
Sample | Prostate cancer cells |
Sample name | DUCaP, EtOH |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV170047: EV-METRIC:44%, 0%, 44%, 44%, 44%, 33%, 33%, 33%
|
|
|
209
|
Experiment ID | 1260 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24371517
|
Organism | Homo sapiens |
Experiment description | Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. |
Authors | Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2013 |
Sample | Prostate cancer cells |
Sample name | LNCaP |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV130168: EV-METRIC:11%, 11%
|
|
|
210
|
Experiment ID | 1261 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24371517
|
Organism | Homo sapiens |
Experiment description | Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. |
Authors | Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR. |
Journal name |
J Extracell Vesicles.
|
Publication year | 2013 |
Sample | Prostate cancer cells |
Sample name | PC3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV130168: EV-METRIC:11%, 11%
|
|
|
211
|
Experiment ID | 1122 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24347249
|
Organism | Homo sapiens |
Experiment description | Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. |
Authors | Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. |
Journal name |
Mol Carcinog
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | LNCaP- Normoxic |
Isolation/purification methods | Differential centrifugation Ultracentrifugation ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
EV140124: EV-METRIC:43%, 25%
|
|
|
212
|
Experiment ID | 1123 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Western blotting
|
PubMed ID |
24347249
|
Organism | Homo sapiens |
Experiment description | Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. |
Authors | Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, Graner M, Frederick B, Agarwal R, Deep G. |
Journal name |
Mol Carcinog
|
Publication year | 2015 |
Sample | Prostate cancer cells |
Sample name | LNCaP- Hypoxic |
Isolation/purification methods | Differential centrifugation Ultracentrifugation ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Western blotting |
EV-TRACK |
EV140124: EV-METRIC:43%, 25%
|
|
|
213
|
Experiment ID | 376 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Microvesicle, Storage day 21-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
214
|
Experiment ID | 377 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Microvesicle, Storage day 3-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
215
|
Experiment ID | 378 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Microvesicle, Storage day 42-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
216
|
Experiment ID | 379 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Nanovesicle, Storage day 21-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
217
|
Experiment ID | 380 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Nanovesicle, Storage day 3-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
218
|
Experiment ID | 381 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles/Nanovesicles |
Identification method | Mass spectrometry
|
PubMed ID |
18346024
|
Organism | Homo sapiens |
Experiment description | The proteome of red cell membranes and vesicles during storage in blood bank conditions. |
Authors | Bosman GJ1, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotnà VM, Bos H, De Grip WJ. |
Journal name |
Transfusion
|
Publication year | 2008 |
Sample | Red blood cells |
Sample name | Nanovesicle, Storage day 42-Red blood cells |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
219
|
Experiment ID | 1096 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24976626
|
Organism | Homo sapiens |
Experiment description | Exosomal transfer from human renal proximal tubule cells to distal tubule and collecting duct cells. |
Authors | Gildea JJ, Seaton JE, Victor KG, Reyes CM, Bigler Wang D, Pettigrew AC, Courtner CE, Shah N, Tran HT, Van Sciver RE, Carlson JM, Felder RA. |
Journal name |
Clin Biochem
|
Publication year | 2014 |
Sample | Renal proximal tubule cells |
Sample name | i22 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Immunoaffinity |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV140335: EV-METRIC:14%
|
|
|
220
|
Experiment ID | 1256 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
24400796
|
Organism | Homo sapiens |
Experiment description | Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. |
Authors | Kang GY, Bang JY, Choi AJ, Yoon J, Lee WC, Choi S, Yoon S, Kim HC, Baek JH, Park HS, Lim HJ, Chung H. |
Journal name |
J Proteome Res.
|
Publication year | 2014 |
Sample | Retinal pigment epithelial cells |
Sample name | ARPE-19 |
Isolation/purification methods | ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV140174: EV-METRIC:13%, 13%
|
|
|
221
|
Experiment ID | 66 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
19199708
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). |
Authors | Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR |
Journal name |
JPR
|
Publication year | 2009 |
Sample | Saliva |
Sample name | Saliva |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LTQ] Western blotting Immunoelectron microscopy |
EV-TRACK |
-
|
|
|
222
|
Experiment ID | 410 |
Identified molecule | mRNA
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Microarray
|
PubMed ID |
20052414
|
Organism | Homo sapiens |
Experiment description | Nanostructural and transcriptomic analyses of human saliva derived exosomes. |
Authors | Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. |
Journal name |
PLoS One
|
Publication year | 2010 |
Sample | Saliva |
Sample name | Normal-Saliva |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | mRNA |
Methods used in the study | Microarray |
EV-TRACK |
EV100049: EV-METRIC:22%
|
|
|
223
|
Experiment ID | 367 |
Identified molecule | protein
|
Extracellular vesicle type | Prostasomes |
Identification method | Mass spectrometry
|
PubMed ID |
12746840
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of human prostasomes. |
Authors | Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, Hood L, Lin B. |
Journal name |
Prostate
|
Publication year | 2003 |
Sample | Seminal fluid |
Sample name | Normal donors-Seminal fluid |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
224
|
Experiment ID | 389 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Prostasomes |
Identification method | Mass spectrometry
|
PubMed ID |
18819103
|
Organism | Homo sapiens |
Experiment description | Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. |
Authors | Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA. |
Journal name |
Prostate
|
Publication year | 2009 |
Sample | Seminal fluid |
Sample name | Normal donors-Seminal fluid |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
225
|
Experiment ID | 1222 |
Identified molecule | protein
|
Extracellular vesicle type | Prostasomes |
Identification method | Mass spectrometry
|
PubMed ID |
26272980
|
Organism | Homo sapiens |
Experiment description | Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes |
Authors | Dubois L, Ronquist KK, Ek B, Ronquist G, Larsson A. |
Journal name |
Mol Cell Proteomics
|
Publication year | 2015 |
Sample | Seminal plasma |
Sample name | Seminal plasma |
Isolation/purification methods | Ultracentrifugation Density gradient centrifugation |
Flotation density | 1.13.1.19 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV150039: EV-METRIC:44%
|
|
|
226
|
Experiment ID | 1138 |
Identified molecule | protein
|
Extracellular vesicle type | Prostasomes |
Identification method | Mass spectrometry
|
PubMed ID |
23707955
|
Organism | Homo sapiens |
Experiment description | Prostasomes from four different species are able to produce extracellular adenosine triphosphate (ATP). |
Authors | Ronquist KG, Ek B, Morrell J, Stavreus-Evers A, Ströolst B, Humblot P, Ronquist G, Larsson A. |
Journal name |
Biochim Biophys Acta
|
Publication year | 2013 |
Sample | Seminal plasma |
Sample name | normal male |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Density gradient centrifugation |
Flotation density | 1-1.5 g/mL |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130152: EV-METRIC:14%, 14%
|
|
|
227
|
Experiment ID | 971 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22808001
|
Organism | Homo sapiens |
Experiment description | Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. |
Authors | Musante L, Saraswat M, Duriez E, Byrne B, Ravidà, Domon B, Holthofer H. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Serum |
Sample name | Serum -Tuberculosis patient 1 |
Isolation/purification methods | Filtration ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120006: EV-METRIC:56%
|
|
|
228
|
Experiment ID | 972 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22808001
|
Organism | Homo sapiens |
Experiment description | Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. |
Authors | Musante L, Saraswat M, Duriez E, Byrne B, Ravidà, Domon B, Holthofer H. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Serum |
Sample name | Serum -Tuberculosis patient 2 |
Isolation/purification methods | Filtration ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120006: EV-METRIC:56%
|
|
|
229
|
Experiment ID | 977 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22808001
|
Organism | Homo sapiens |
Experiment description | Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. |
Authors | Musante L, Saraswat M, Duriez E, Byrne B, Ravidà, Domon B, Holthofer H. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Serum |
Sample name | Serum -Tuberculosis patient 7 |
Isolation/purification methods | Filtration ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120006: EV-METRIC:56%
|
|
|
230
|
Experiment ID | 978 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22808001
|
Organism | Homo sapiens |
Experiment description | Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. |
Authors | Musante L, Saraswat M, Duriez E, Byrne B, Ravidà, Domon B, Holthofer H. |
Journal name |
PLoS One
|
Publication year | 2012 |
Sample | Serum |
Sample name | Serum -Tuberculosis patient 8 |
Isolation/purification methods | Filtration ExoQuick |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120006: EV-METRIC:56%
|
|
|
231
|
Experiment ID | 1128 |
Identified molecule | protein
|
Extracellular vesicle type | Extracellular vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
23954818
|
Organism | Homo sapiens |
Experiment description | Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state. |
Authors | Garnier D, Magnus N, Meehan B, Kislinger T, Rak J. |
Journal name |
Exp Cell Res
|
Publication year | 2013 |
Sample | Squamous carcinoma cells |
Sample name | Normal A431 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130185: EV-METRIC:11%
|
|
|
232
|
Experiment ID | 306 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry [MALDI TOF/TOF] Mass spectrometry [Q-TOF]
|
PubMed ID |
16342139
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization |
Authors | Miguet L, Pacaud K, Felden C, Hugel B, Martinez MC, Freyssinet JM, Herbrecht R, Potier N, van Dorsselaer A, Mauvieux L |
Journal name |
Proteomics
|
Publication year | 2006 |
Sample | T cells |
Sample name | CEM T cell - PHA activation |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF/TOF] Mass spectrometry [QTOF] |
EV-TRACK |
-
|
|
|
233
|
Experiment ID | 307 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry [MALDI TOF/TOF] Mass spectrometry [Q-TOF]
|
PubMed ID |
16342139
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization |
Authors | Miguet L, Pacaud K, Felden C, Hugel B, Martinez MC, Freyssinet JM, Herbrecht R, Potier N, van Dorsselaer A, Mauvieux L |
Journal name |
Proteomics
|
Publication year | 2006 |
Sample | T cells |
Sample name | CEM T cell - ActD activation |
Isolation/purification methods | Differential centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [MALDI TOF/TOF] Mass spectrometry [QTOF] |
EV-TRACK |
-
|
|
|
234
|
Experiment ID | 707 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Control |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
235
|
Experiment ID | 708 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Control |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
236
|
Experiment ID | 709 |
Identified molecule | protein
|
Extracellular vesicle type | Apoptotic bodies |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Control |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
237
|
Experiment ID | 710 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Activated |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
238
|
Experiment ID | 711 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Activated |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
239
|
Experiment ID | 712 |
Identified molecule | protein
|
Extracellular vesicle type | Apoptotic bodies |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Activated |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
240
|
Experiment ID | 713 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Apoptotic |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
241
|
Experiment ID | 714 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Apoptotic |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
242
|
Experiment ID | 715 |
Identified molecule | protein
|
Extracellular vesicle type | Apoptotic bodies |
Identification method | Mass spectrometry
|
PubMed ID |
28811610
|
Organism | Homo sapiens |
Experiment description | Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. |
Authors | Néth A, Orgovan N, Só BW, Osteikoetxea X, Páczi K, Szabóylor KÉ Vukman KV, Kittel Á TuriáL, Wiener Z, TóS, Drahos L, Véy K, Horvath R, BuzáEI. |
Journal name |
Sci Rep
|
Publication year | 2017 |
Sample | T cells |
Sample name | Jurkat cells - Apoptotic |
Isolation/purification methods | Differential centrifugation Filtration Ultracentrifugation Density gradient centrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV170063: EV-METRIC:75%, 75%
|
|
|
243
|
Experiment ID | 1005 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23463506
|
Organism | Homo sapiens |
Experiment description | The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. |
Authors | Perez-Hernandez D, Gutiéez-Váuez C, Jorge I, Ló-MartíS, Ursa A, Sáhez-Madrid F, Váuez J, Yáz-Mó |
Journal name |
J Biol Chem.
|
Publication year | 2013 |
Sample | T cells |
Sample name | T lymphoblasts - exosomes pulldown with EWI-2 as a bait |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry Western blotting |
EV-TRACK |
EV130110: EV-METRIC:22%
|
|
|
244
|
Experiment ID | 1008 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23463506
|
Organism | Homo sapiens |
Experiment description | The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. |
Authors | Perez-Hernandez D, Gutiéez-Váuez C, Jorge I, Ló-MartíS, Ursa A, Sáhez-Madrid F, Váuez J, Yáz-Mó |
Journal name |
J Biol Chem.
|
Publication year | 2013 |
Sample | T cells |
Sample name | T lymphoblasts |
Isolation/purification methods | Differential centrifugation Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130110: EV-METRIC:22%
|
|
|
245
|
Experiment ID | 538 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
23844026
|
Organism | Homo sapiens |
Experiment description | Characterization of human thymic exosomes. |
Authors | Skogberg G, Gudmundsdottir J, van der Post S, Sandström K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O. |
Journal name |
PLoS One
|
Publication year | 2013 |
Sample | Thymus |
Sample name | Normal-Thymus |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV130018: EV-METRIC:63%
|
|
|
246
|
Experiment ID | 680 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
247
|
Experiment ID | 681 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
248
|
Experiment ID | 682 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Preterm newborns- replicate 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
249
|
Experiment ID | 683 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 1 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
250
|
Experiment ID | 684 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 2 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
251
|
Experiment ID | 685 |
Identified molecule | protein
|
Extracellular vesicle type | Microvesicles |
Identification method | Mass spectrometry
|
PubMed ID |
29148239
|
Organism | Homo sapiens |
Experiment description | Metabolic Signature of Microvesicles from Umbilical Cord Mesenchymal Stem Cells of Preterm and Term Infants. |
Authors | Bruschi M, Santucci L, Ravera S, Bartolucci M, Petretto A, Calzia D, Ghiggeri GM, Ramenghi LA, Candiano G, Panfoli I. |
Journal name |
Proteomics Clin Appl
|
Publication year | 2018 |
Sample | Umblical cord mesenchymal stem cells |
Sample name | Term infants- replicate 3 |
Isolation/purification methods | Differential centrifugation Ultracentrifugation Sonication Filtration |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
252
|
Experiment ID | 13 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
15326289
|
Organism | Homo sapiens |
Experiment description | Identification and proteomic profiling of exosomes in human urine. |
Authors | Pisitkun T, Shen RF, Knepper MA |
Journal name |
PNAS
|
Publication year | 2004 |
Sample | Urine |
Sample name | Urine - Normal |
Isolation/purification methods | Ultracentrifugation |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry [LCQ DECA XP] Western blotting |
EV-TRACK |
-
|
|
|
253
|
Experiment ID | 382 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18373357
|
Organism | Homo sapiens |
Experiment description | Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. |
Authors | Smalley DM, Sheman NE, Nelson K, Theodorescu D. |
Journal name |
J Proteome Res
|
Publication year | 2008 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
254
|
Experiment ID | 383 |
Identified molecule | protein
|
Extracellular vesicle type | Microparticles |
Identification method | Mass spectrometry
|
PubMed ID |
18373357
|
Organism | Homo sapiens |
Experiment description | Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. |
Authors | Smalley DM, Sheman NE, Nelson K, Theodorescu D. |
Journal name |
J Proteome Res
|
Publication year | 2008 |
Sample | Urine |
Sample name | Patients of bladder cancer-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
255
|
Experiment ID | 390 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane particles |
Identification method | Mass spectrometry
|
PubMed ID |
19158352
|
Organism | Homo sapiens |
Experiment description | Characterization of PKD protein-positive exosome-like vesicles. |
Authors | Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ, Charlesworth MC, Torres VE, LaRusso NF, Harris PC, Ward CJ. |
Journal name |
J Am Soc Nephrol
|
Publication year | 2009 |
Sample | Urine |
Sample name | Patients of autosomal recessive polycystic kidney disease-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
-
|
|
|
256
|
Experiment ID | 429 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
21595033
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. |
Authors | Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV110019: EV-METRIC:44%
|
|
|
257
|
Experiment ID | 430 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
21595033
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. |
Authors | Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Urine |
Sample name | Patients of basement membrane nephropathy-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV110019: EV-METRIC:44%
|
|
|
258
|
Experiment ID | 431 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
21595033
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. |
Authors | Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. |
Journal name |
Proteomics
|
Publication year | 2011 |
Sample | Urine |
Sample name | Patients of early IgA nephropathy-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV110019: EV-METRIC:44%
|
|
|
259
|
Experiment ID | 437 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes/Membrane vesicles |
Identification method | Mass spectrometry
|
PubMed ID |
22106071
|
Organism | Homo sapiens |
Experiment description | Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). |
Authors | Wang Z, Hill S, Luther JM, Hachey DL, Schey KL. |
Journal name |
Proteomics
|
Publication year | 2012 |
Sample | Urine |
Sample name | Normal donors-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120168: EV-METRIC:14%
|
|
|
260
|
Experiment ID | 444 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22418980
|
Organism | Homo sapiens |
Experiment description | A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. |
Authors | Raj DA, Fiume I, Capasso G, Pocsfalvi G. |
Journal name |
Kidney Int
|
Publication year | 2012 |
Sample | Urine |
Sample name | Normal_high density-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120083: EV-METRIC:22%
|
|
|
261
|
Experiment ID | 445 |
Identified molecule | protein
|
Extracellular vesicle type | Exosomes |
Identification method | Mass spectrometry
|
PubMed ID |
22418980
|
Organism | Homo sapiens |
Experiment description | A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. |
Authors | Raj DA, Fiume I, Capasso G, Pocsfalvi G. |
Journal name |
Kidney Int
|
Publication year | 2012 |
Sample | Urine |
Sample name | Normal_low density-Urine |
Isolation/purification methods | - |
Flotation density | - |
Molecules identified in the study | Protein |
Methods used in the study | Mass spectrometry |
EV-TRACK |
EV120083: EV-METRIC:22%
|
| |